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PREFACE

For the last five years I have been giving a course of lectures on classical
mechanics to last year undergraduates and first year research students
at Oxford University. This course consisted of about 30 lectures and
covered the subject matter of the present textbook. I devoted to each of the
chapters roughly the same amount of time, namely about four hours, and
feel that this particular course adequately covered those aspects of classical
mechanics with which any physicist should be acquainted these days,
without really delving into the many beautiful ramifications of which there
are so many in classical mechanics. As the emphasis and the selection of
subject matter in my course is rather different from the one in existing
modern textbooks, of which those by Corben and Stehle and by Goldstein
are the best known and most widely used examples, I felt that it might
be of use to some people to publish this volume.

In writing this_text 1 have benefited greatly from my own notes on
lectures given by the late Professor H. A. Kramers at Leiden. I am also
in debt to the various Oxford undergraduates whom I have taught classical
mechanics. Finally, 1 should like to express my gratitude to Professor
J. de Boer, Professor W. E. Lamb Jr., and Dr. W. E. Parry for critically
reading through the manuscript of this volume and suggesting possible
improvements. '

D. ter Haar
Oxford, December 1960 y



CONTENTS

Chapter 1: NEWTONIAN MECHANICS

SeCHON 1 NeWtON'S LaWSE: < v 0 0 60 s e s e e e e e b e
2. Central Fields of Force. . . . . . . . .
3. Systems of Particles . . . . « v ¢ ¢ & 0 o s o o s 4 s 8 0w e

Chapter 2: THE LAGRANGIAN EQUATIONS OF MOTION

Bechion 1 CONSIIRINIE’ =/ 0 o ' ta-05 Vi o iwreier e el e ooty
2. D'Alembert’s Principle . . . . « ¢ ¢ o ¢ ¢ o v v 0208
= 3, Lagrange’s Equations of Motion. . . . . . . . .. . ...
4. Cyclic Coordinates v < v /v o ais iis siiem s
5. Non-Holenomic Constraints; Velocny Dependent Potentials. . . .
6. Conservation Laws . . . . . . . . . . .

PR o2 SR §

o w e ey e e e Jeile)

Chapter 3: SMALL VIBRATIONS

Section 1. The Theory of Small Vibrations. . . . . .
2. The Double Pendulum . . .. . « . v « ¢ & o .
3. Molecular Vibrations . . . . . . .
4. The Normal Vibrations of a OneoDxmennional Crystal
5. Oscillations Around an Equilibrium Motion . . . . . . . .

Chapter 4: DYNAMICS OF RIGID BODIES

Sectian 1 Introdnction 5 | e s ey e s TR G e Y
2. The Euler Equations .
3. Rotating Frames of Reference; The Coriolis Force

........

Chapter 5: THE CANONICAL EQUATIONS OF MOTION

Section !. The Hamilionian Equations of Maotion.
2. Canonical Transformations . .
3. Poisson and Lagrangian Brackets. Inﬁmtaum;i Trausformations . .

4, Variational Principles; Time and Energy as Canonically Conjugate
Variables

.........

...........................

Chapter 6: HAMILTON-JACOBI THEORY

Section 1. The Hamilton-Jacobi Equation
2. Action and Angle Variables. .
3. Adiabatic Invariants . . . . .

Chapter 7: PERTURBATION THEORY

Section 1. The Anharmonic Oscillator . .
2. Canonical Psrturbation Theory
3: Zeeroan and Stark Effect of the Hydrogen Atom . . .

vii

93
103

114

121
132
139

146
153
162



viii CONTENTS

Chapter 8: CONTINUQUS SYSTEMS

Section 1. The Lagrangian and Hamiltonian Formalism for Continna. . . . . 167
2. Sound Waves; The Maxwell Bquations. . . « « o v ¢ ¢ v o« . . 175

LT RN e e SR R e R e B 181
L T e N e e N T e A R
Blioe o o e L b e S G e RS
GLOSSARY OF SYMBOLS . . . . . . . .. .. ... Lo T



CHAPTER 1

NEWTONIAN MECHANICS

In this chapter we discuss briefly Newton’s laws and apply them to the
case of a central field of force with special reference to the inverse square law
force. Scattering by a central field of force is briefly considered. Some prop-
erties of systems consisting of several particles which interact through two-
body central forces are also discussed.

n 1. NEWTON'S LAWS

The basis of classical mechanics is formed by Newton’s laws with which
we shall start our discussion. We shall assume that the terms used in stating
these laws have a well-defined meaning (they have all an ntuitive meaning),
as we do not wish to discuss the various concepts introduced here. In writing
down Newton’s laws we are assuming that there are systems of reference
in which they are valid. Such systems are called inertial systems, and we shall.
assume that all our vectors are defined in sych a system. We may add that
any system moving with a uniform velocity with respect to an inertial system
is again an inertial system.

We can now state Newton’s laws:

Lex prima. If there are no forces acting on a pariicle it will persist in its
motion, that is, it will move along a straight line with a constant velocity.

Lex secunda. If there are forces acting on a particie, the rate of change cf
the linear momentum of the particle will be equal to the total force acting
on it. The linear momentum of a particle is defined as the product of its
mass and its velocity.

Lex tertia. When two particies act upon one another, the force due to the
first particle upon the second one is equal to, but in the oppesite direction
to, the force due to the second particle upon the first one. (Actio est reactio).

In using the term particle we shali throughout the book have in mind a
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= NEWTONIAN MECHANICS 2 [Ch. 1,81

point particle, that is, an entity characterised by its mass m, its position x
and its veloc1ty v which is equal to the rate of change of x,

dx
= 1.101
5 (1.101)

where: ¢ is the time coordinate.

As long as we do not discuss relativistic effects, we can assume m to be a
constant which is characteristic of the particle.

We can express Newton’s laws in mathematical form as follows:

Lex prima: If F =0, »= constant; (1.102)
Lex secunda: (%mv = (1.103)
Lex tertia: Fyy = —Fjyy, or, Fy,+F, = 0. (1.104)

In these equations F is the total force on a particle, and F,, (F,,) is the
force exerted by particle number 2 {1) upon particle number 1 (2).
If m is constant, equation (1.103} can also be written in the form

ma = F, a= e 5 (1.105) -
; dt
where a is the acceleration of the particle. This form of Newton's second law
— force equals mass times acceleration —— is the slightly more familiar one,
but it is interesting to note that Newton himself used the other formulation
which remains valid in the case of variable m.

The first law is Galileo’s inertial law; hence the term inertial system.
Comparing (1.105) and (1.102) we see that the first law is a special case
(for F = 0) of the second law. The mass m which can be considered to be
defined by (1.103) is called the inertial mass of the particle; it has experimen-
tally been shewn to be equal to the Aeavy (or gravitational) mass of a particle
which is proportional to its weight. It may be mentioned here that this equal-
ity of the two kinds of mass follows namrally in the general theory of
relativity.

Before discussing some of the consequences of Newton’s laws we wish to
mention that one sometimes finds as a lex quarta the rule that the addition
of forces acting on a point particle follows the rules for the addition of
vectors. This has tacitly been assumed in our equations (1.103) and (1.104),
as we have used for the force a leiter type typical of vectors.
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- Even without specifying the forces, we can draw some conclusions from

(1.103) and (1.104). First of all, let us consider a system of two particles
where the only forces acting upon the particles are Fy, and F,;. From
(1.104) it follows that

J"‘(Flz +F2!)dt = 0- 3 (1.106)
I

As F;; (F,) is the only force acting upon the first (second) particle, we
can use (1.103) to write

Fig = T, 21 i (1.107)
and we get from (1.106) and (1.107) ’
[myo; +my0, 1 = 0, (1.108)
or |
pi+p: = Py +p3 (1.109)
where the linear momentum p is defined by the equation
P = my, {1.110)

and where the primes (double primes) indicate the values of the quantities
at ¢’ (¢").

Equation (1.109) expresses the law of conservation of (linear) momentum
which we have now shewn to hold for an isolated system of two interacting
partlcles

Let us now consider the motion of one particle under the mﬂuence of a
force F and let us evaluate the integral

= J‘:(F - dx). : (1.111)
Using (1.103), and writing dx = vdz, we have
1= Jj(mi x)dt = [4mx*}y = T"'-T", (1.112)
where we have introduced the kinetic energy T by the equation |

T = ¥mv* = im(x - x), (1.113)

and where a dot (two dots) denote here and henceforth differentiating once
(twice) with respect to the time.
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As (F + v) is the work done per unit time by the force on the particle, we
sce that (1.112) expresses the fact that the total work done by the forces
acting upon a particle during a time interval (¢', ¢') is equal to the change
in the kinetic energy of the particle. From (1.112) one can prove the con-
servation of energy, provided the field of force is a conservative one. A ficld
of force is conservative, if the forces can be derived from a potenzial function
U by the equation

F = VU, (1.114)

_where V is the g*ad'cqt operator with components d/dx, 6/6y, and 0/0z.
In that case we have

pTad
{"(F-dx) = | (VU ) = ~vsU, (1.115)
Jy’ v

or, using {1.111) and (1.112), ‘ .
T+ =T'+U". (1.116)

The poiential U 1s cailed the petential energy and we see from (1.116) that,
provided U does not depend explicitly on ¢, the fotal energy E, that is, the
sum of the kinetic ‘and the poiential energy, ;

E=T7T+U, (1.117)

is a consiant of motion, that is, does not change in time during the motion .
of the particle.

We note from (1.115) that in the case of a conservative field of force, the
miegral on the left hand side does not depend on the path of the particle,
but only on its position at the beginning and at the end of the time interval
considered. If this were not the case, we could not, of course, have intro-
duced a potential function. Indeed, one can define a conservative field of
force by the requirement that the integral 7 of (1.111) depends only upon the
positions of the particle at ¢* and ¢, but not on the path traversed between
I and 7l i 2

If we are dealing with a one-dimensional conservative system, the equa-
tions of motion can always be solved by quadrature. Smce the encrgy is a
constant of motion, we can write

E= «}mx LU (1.118)
or, }

= [(2/m)E-U)}* | - (119
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from which -we get .
R f ([E— UGx)]/m) ~*dx, (1.120)
Xo

where x, is the position of the particle at fo.
A simple example of such a case is that of a linear harmonic oscillator,
which is defined by a potential energy U given by the equation

U = lax’. (1.121)
The solution {1.120) is now of the form
t—t, = (mja)* arc sin [x(a/2E}*],
or :
x = (2E/a)qu sin 2nv(t o), 2mv = {(ajm)*; (1.122)

where v is the frequency of the harmonic oscillator, and where for-the sake
of simplicity we have put X, equai to zero.

We note in (1.122) that the energy is proportional to the saquare of the
amplitude of the oscillation.

“». CENTRAL FIELDS OF FORCE

In many physical systems the forces are of a special king, namely, central
forces. These are forces which are acting along the line connecting the body
on which the force is acting with the body producing the field of force. If we
restrict our discussion to the case of a single particle in an external field of
force, a central field of force is one in which the force acting on the particle
will be directed along the line connecting the particle and a fixed point, the
centre of the force field. If we choose the origin at the centre of the field,
the force F acting on the particie will be of the form

F = f(x, », 2)x. {1,201)

In general such a field of force need n(;t be conservative, If it is conserva-

tive, the function f(x, y, z) occurring in (1.201) can depend on the distance r
from the origin only, = N

F=iirx (1.202)

This can be shewn by using (1.114) for & conservative force and evaluating
the components of F. We get :
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..

Fx="'-a-q, F':‘_a—l'I Fz=;‘?—U

0% % oy’
and as (1.201) must hold, we have in spherical polars r, 6, @,

5 (1.203)

_§g=_frsin000s<p, —ﬂ{=_frsinesincp, -—a—U-=frcoso, (1.204)
ox dy 0z ;

from which it follows that

ou ou ou
iy B i oL 0’ © e =, 1.205
o Ir 55 %0 ( )

From the last two equations, it follows that U depends on r only, and from
the first equation we then see that (1.202) must hold, while

il(x) = U(r) = -fr,rf(r)dr. (1.206)

Particular examples of central forces are the isotropic harmonic oscillator
and the Coulomb or gravitational force field. In the first case the potential is
given by the equation

U = jar?, = (1.207)
and in the second case by the equation
U= —x/r. (1.208)

_ If the constant x in (1.208) is positive we are dealing with an attractive force,
while a negative k corresponds to a repulsive force. Equation (1.208) leads,
of course, to an inverse square force, that is, a force proportional to the
inverse square of the distance from the origin.

Fig. 1. Central field of force: O: centre of force field; P: position of particle; x: velocity
vector of particle; F: force acting upon particle.
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The orbit of a particle on which the force (1.201) is acting will lie in a
plane. This can be seen as follows (see fig. 1). According to Newton’s second
law, the acceleration of the particle will be in the digection of the force.
Hence, both the acceleration and the velocity of the particle will be, and will
remain, in the plane through the origin containing the velocity of the particle.
Put differently, there will never be a component of the acceleration perpen-
dicular to the plane through the origin and the velocity, so that the particle
will stay in this plane, the orbital plane.

It is possible to prove that the orbit of a pa.rtlcle moving under the
influence of a central field of force is a planar one by considering the angular

momentum of the particle. The angular momentum with respect of the origin,
M, is defined by the equation

M = [xA p] = [xA mx]. (1.209)
The angular momentum was in the past often called the moment of momen-
tum, a very descriptive term. The nomenclature ‘angular momentum’ de-
rives from the consideration of generalised coordinates which is given in the
next chapter. The rate of change of M is given by the equation

M = [ A m&]+[x A m¥] = 0+[xAfx] =0, (1.210)
where we have used (1.105) and (1.201).

We have thus found for the case of a central force field a constant of
motion, namely, M, which is a vector, and thus really corresponds to three
constants of motion. As M is constant, we see from (1.209) that the vector x
will always lie in the fixed plane perpendicular to M, which proves our state-
ment that the particle orbit will be a planar one.

The problem of a particle in a central field of force can thus be reduced to
a two-dimensional problem. The solutions of the original equations of
motion, three second order differential equations, would contain six integra-
tion constants. Two of those can be chosen to be the direction cosines of M,
that is, they fix the normal to the orbital plane. In the remaining two-
dimensional problem we are left with four integration constants which to-
gether with these two direction cosines make up the original six constants of
motion. Of the remaining four, one will be the absolute magnitude of M.

So far our conclusions are general and hold for forces which are not
necessarily conservative. If the force field is conservative — and we shall
from now on assume that this is the case — one of the last three constants
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of motion is the total energy and the other two will appear when the
equations of motion are solved by quadrature, as can be done for a\co‘nserva-
tive:central field. @

Let us choose the z-axis of our systera of coordinates along M and let us
introduce polar coordinates r and 6 in the xy-plane; that is, in the orbital
~ plane, as follows 3
X = rcos 6, y = rsin.f.. (1.211)

Expressed in termé of x and y the equations of motion are of the form
m55=_fd_U, j;=_2§2 (1.212)
r dr rodrsss

where U is given by (1.206), and the force by (1.202).
If M be the absolute magnitude of the angular momentum and E the
energy, we have from (1.209) and (1.117),

M = m(xj—p%), E = Im(z*+32)+ UQ). (1.213)

Equations (1.213) can, of 'course, be derived directly from (1.212) by
quadrature.
Introducing r and 6 we get instead of (1.213) the equations

M = mr?f, (1.214)
E = imi?+3mr20® + U(r). 3 (1.215)

~ Equation (1.214) describes the so-called law of areas. We know that M
is a constant. To see the physical meaning of the right hand side of (1.214)

Fig. 2. The law of areas: O: centre of the force field; P: position of particle at time #£;
Q: position of particle at time #-+dr; 6: polar angle:

we consider fig. 2. Let. the: particle pass from P to Q during the: ‘time
interval ¢, ¢+dz. From the figure it is clear that during dr the radius vector
sweeps through an area 37?df. The areal velocity, defined as the area swept
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through per unit time, is thus equal to 4r?6 and is constant according to -
(1.214). This is sometimes expressed as follows: The radius vector describes
equal areas in equal times. For the case of the gravitational potential (1.208)
this statement is known as Kepler’s second law, but we have just seen that it
is generally true for any central force, even for a non-conservative one.

Equation (1.215) gives an expression for the total energy in terms of polar
coordinates, and we note that the kinetic energy T in planar polars is of the
form

T = ymi? 4+ imr*@?, : (1.216)
where the two terms on the right hand side refer respectively to the radial and

transverse motion of the particle. :
Eliminating 0 from (1.214) and (1.215) we get

M?
E = 3mi*+ U(r)+ - - 5
2mr

(1.217)

The last term on the right hand side of this equation might be called the
centrifugal potential energy. The absolute magnitude F,; of the force corre-
sponding to this term would be given by the equation
2 2 3
o Sl g LT (1.218)
dr2mr* mr® r

where v, is the velocity component perpendicular to the radius vector
(M = mrv,). We see that we get for F,; the usual expression for the centri-
fugal force acting on a particle which moves in a direction at an angle to the
radius vector.

Formally (1.217) is of the same form as (1.118) for the one-dimensional
case with an equivalent potential energy U(r) + M 2/2mr?, that is, equal to the
sum of the potential energy and centrifugal potential energy. We can thus
solve this equation by quadrature, and the result is

: dr =
I—ty = - s 1.219
=l -0 _ e
m m m*r’

where r, is the value of r at t,. Combining (1.219) with (1.214) we get

t Mdt r Mdr }
At Bl =j -yl
0 f mr> = ;.2{2m[E_ U(")]'—Mzr—%}* (, )

fa
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This equation gives us @ as a function of r, that is, the form of the orbit. The
remaining two integration constants are now fixed: they are the values of
0 and r at ¢, '

Before considering quantitatively the orbit for a special choice of U, name-
ly (1.208), we shall consider qualitatively different kinds of orbits which
arise when U(r) behaves as r~* both for very large and for very small values
of r, although not necessarily with the same coefficient. Such a potential is
of interest in atomic problems. The last electron in an atom will feel a poten-
tial —e/r at large distances from the nucleus — the nuclear charge being

- % U
M2
“mZrZ
2Um)_ M2
“m mirt

;2

od

Fig. 3. Qualitative behaviour of orbits in a central potential.

a): Potential energy, centrifugal energy, and kinetic energy as functions of the distance
from the centre of the force field. The /-curve is the same as the —2/m)U(r)— M3mor-
curve, but with the abscissa axis starting from A, B, or C instead of O, depending on the
value of E [A: E, (<0), B: E, (> 0), C: E; (< 0, circular orbit)].
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screened by the other Z—1 electrons — and a potential — Ze/r near the
nucleus, when it is well inside the other electrons. In fig. 3 we have given
first of all (Fig. 38) —2U(r)/m, — M?[m*r?, and their sum, as well as #* as
a function of r. This last function is obtained by rewriting (1.217) as follows

2R U MY
m m . mr
it must be noted that in fig. 3a the abscissa axis is different for different

" f\_} L (\_;
s e

E=EF;<( E=E, >0

(1.221)

Fig. 3. b): Radial velocity as function of distance from centre of force field.

Fig. 3. ¢): Orbits for negative and positive energy values: O: centre of force field.

values of £ in the 2 against r diagram. In fig. 3b we have plotted 7 as a func-.
ion of r for two energy values E; and E, of which one is positive and the
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other one negative. It can be seen both from fig. 3a and from fig. 3b that for
negative values of E the orbit will be one for which the particle does not dis-
appear to infinity but is moving between two values of r, r; and r,. It will
thus in general be a rosette of the general shape shewn in fig. 3c. In the
limiting case (E; in fig. 3a) where the r-axis just touches the #2(r) curve we
have a circular orbit. If E is positive, the orbit is an open one, and the
particle has sufficient energy to disappear to infinity. This difference between
open and closed orbits depending on whether E is positive or negative will
" crop up again presently, when we discuss the 1/~potential [see the discussion
of (1.240)j.

In many cases of interest the equatnons of motion simplify when we intro-
duce o = r~! instead of r as our coordinate. This substitution is the basis of
Binet’s method which is especially useful in the case where U is given by
(1.208).

Let us first of all consider a decomposition of the force F acting on the
particle into two components /) and F, along and at right angles to the :
radius vector. We shall express this decomposition by using the Argand
diagram of complex numbers, ; .

m(% +iy) = (Fj+iF )e". (1.222)
If we write (1.211) in the composite form
: o x+iy = re’, (1.223)
we find for the left hand side of equaﬁon (1.222) :
m(E+iy) = m(#—r6”> +irf+2ir0)e", (1.224)
and hence
F, = m(rf+2i0) = ’ff %6, (1.225)
r
F“ = m(i‘—-r@z). (1.226)

As we are dealing with central forces, F, vanishes, and (1.225) leads to

(1.214), while from equations (1.212) it follows that the left hand side of

(1.224) is equal to — (dU/dr)g“’, so that we can rewrite (1.226) in the form
<f

i %‘_r’ = m(F—r0?). (1.227)



