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PREFACE

THE main purpose of this book is to give an account of some of the
more interesting developments in instrumental optics during the last
twenty years. A complete survey would have taken up more than the
available space, and the book therefore deals with selected topics.
Many of these reflect the author’s special interests; in particular the
discussion of image assessment and error balancing at the beginning of
Chapter I is based on previously unpublished work by him and by
P. A. Wayman. It is hoped, however, that the choice is wide enough to
convey a good general idea of the renaissance in instrumental optics
which has taken place since F. Zernike’s pioneer work on the phase-
contrast microscope and on the analysis of partial coherence. The
remainder of Chapter I deals with what is commonly called the diffrac-
tion theory of aberrations and with the imaging of coherent and partially
coherent object-surfaces.

It has not seemed appropriate to refer specifically to the techniques
of practical optics, but the importance of new types of optical system
of very high theoretical performance is closely bound up with the
existence of a high level of practical figuring technique. This in turn
depends on the availability and adequate understanding of test pro-
cedures, among which the Foucault knife-edge test still occupies a
prominent place. An account of the diffraction theory of this test is
given in Chapter II.

Among the newer types of optical system introduced in recent years,
the Schmidt camera stands out as one of the most successful, especially
in astronomy, where Schmidt telescopes of large aperture and small
fast Schmidt spectrograph cameras have set up an entirely new standard
of photographic performance. A systematic account of the fifth-order
optics of the Schmidt camera and of the field-flattened Schmidt camera
is given in Chapter IIL.

In Chapter IV, C. R. Burch’s method of plate-diagram analysis is
developed and applied to discuss the Seidel properties of Schmidt—
Cassegrain systems, of the Schmidt camera with aspherized mirror,
and of coma-free two-mirror systems.

My grateful thanks are due to Dr. R. Kingslake, Professor F. Zernike,
Professor A. Maréchal, and Dr. C. R. Burch for their kindness in
supplying original photographs and drawings reproduced in Chapters I
and IV. Thanks are also due to the Societies concerned for permission
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to reproduce long extracts from papers published in the Proceedings
of the Royal Society, the Proceedings of the Physical Society, and
the Monthly Notices of the Royal Astronomical Society, and to the
Clarendon Press for their unfailing care and courtesy.

E. H. L.
THE OBSERVATORIES

UNIVERSITY OF CAMBRIDGE
October 1954
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I
THE OPTICAL IMAGE

1. Geometrical theory
1.1. Introduction

Ix spite of its mathematical elegance, general ikonal theory does not
provide a very satisfactory starting-point for a discussion of the images
formed by optical instruments. In its general form, the theory does not
show any natural tendency to centre round the special preoccupations
of instrumental optics; when it is made to do this by appropriate mathe-
matical restatement, the analysis loses most of its elegance and still does
not give much insight into the actual working of optical systems. A more
physical approach is therefore adopted in the present section, and ikonal
theory only makes brief appearances as a convenient analytical tool.

In instrumental optics, we usually have to deal with what is effectively
a single infinity of pencils of rays issuing from the separate points of a
symmetrical object surface, passing through a centred optical system,
and emerging as bundles of rays each of which is approximately con-
current. The points of approximate concurrence (in some agreed sense)
form a thin shell or image-layer in the image-space and the receiving
surface or ‘image surface’ may be supposed to be anywhere in this layer,
though of course some positions will be preferable to others.

The first problem is evidently the determination of the image-layer
corresponding to a prescribed object surface for a given optical system,
and the choice within this layer of the best receiving surface according
to a prescribed method of assessing image quality.

It is easy to show that the Petzval surface lies in the image-layer and
that, as Conrady first pointed out, it forms a convenient and natural field
reference surface. But a comparison of the relative merits of the different
receiving surfaces within this layer requires the setting up of analytical
formulae which describe the behaviour in the image-layer of the rays
issuing from an arbitrary point of the object surface. Exact formulae
are almost useless for this purpose, even in the investigation of two-
component systems like the Schmidt camera, because of their formidable
complexity. With more elaborate systems such as a Taylor triplet lens
the situation would be much worse. A general analytical discussion of
these systems, if it is to be made at all, should from the nature of the
problem be based on an appropriate use of approximations.

It is obvious that mere inequalities giving upper limits to the size of

8505 .48 B



2 THE OPTICAL IMAGE I;:§ 1

the geometrical images do not give enough information; they will not
even prescribe the best choice of the receiving surface within the image-
layer, still less indicate optimum values for the design-constants of the
system.

We need approximate formulae, valid in the image-layer, consisting
of a leading term plus an error-term.- Such formulae may allow the best
receiving surface to be determined, with an error which is too small to
affect seriously the performance of the system, and the structure of the
image in this surface to be analysed.

For the present, we suppose the light monochromatic; the effects of
chromatism will be considered later.

1.2. Notation

Fig. 1 represents an axially symmetric system S which images the
points of a spherical or flat object surface on to a receiving surface in the
image-layer, both object surface and receiving surface being symmetrical
about the optic axis of S. We suppose that S works over a field of angular
diameter O(u) radians, where O(u) means ‘not exceeding a moderate mul-
tiple of u’ and y is the numerical aperture of S, suitably normalized. Then
all the rayys which pass through S make angles O(n) with the optic axis.

Slightly different choices of p-normalization are preferable in different
applications. In a Schmidt camera, u may be conveniently defined as
H|R, where H is the semi-aperture and R the radius of curvature of the
spherical mirror; this makes u nearly equal to half the numerical aper-
ture, whence p? ~ # in an f/2 Schmidt and our approximate formulae
are accurate to & few per cent. In an f/1 Schmidt, u* ~ {5 and the
accuracy of these formulae is correspondingly reduced. In a refracting
system, a definition of u which puts its value near to the numerical
aperture improves the verisimilitude of the picture given by the error-
term assessments. In a general discussion, it seems better to leave the
p-normalization arbitrary to the extent of a factor comparable with
unity, and this will be done here. _

By Gauss imaging of its aperture stop, the entry and exit pupils of S
are obtained. We set up Cartesian coordinates (,y, 2) in the image-space
of S, taking the origin O’ at the centre of the exit pupil and the axis O’z
along the optic axis (see Fig. 1). The exit pupil then fills a circle
2242 < H'?inthe plane z0'z, where H' = O(fu) and f isthe focallength.

In this plane, and in the space near it, we introduce scale-normalized
lateral coordinates u, v by means of the equations

x = H'u, y = H'v. (1.1)
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The scale-normalized polar coordinates 7, ¢ in the space surrounding
the exit pupil are connected with u, v by the equations
% = rcos ¢, v = rsing, r = —.(u2-}22). (1.2)
The exit pupil occupies the region w242 < 1 of the plane zO’y.

Receiving
surface

Frea. 1.

From the off-axis object point P a pencil of rays passes through the
system S to form an image-patch on the receiving surface. We call the
ray through O the principal ray of the emerging pencil and its inter-
section P’ with the receiving surface the principal point of the image.
Because of the axial symmetry of S, there is no loss of generality in
supposing the off-axis displacement of P’ to be in the positive y-direction.

By the angular off-axis distance of the image we mean the angle
V' = P’O’2. As P runs over the object field, ¥’ ranges over a certain
interval (0, V). We define ® = V’/V, so that the field is defined by
the inequalities 0 << O < 1.

Because of the aberrations of the system, the rays of the emerging
pencil trace out in the plane 20’y a region which does not exactly

coincide with the exit pupil; their boundaries may differ by O(fu3).

Some or all of the optical surfaces of S may be figured; we suppose
that no figuring depths exceed O(fu*). This condition is satisfied by all
‘useful’ figurings in systems for which angular aperture and angular
field radius are both O(p).

We restrict the discussion to ‘useful’ receiving surfaces, namely those
sufficiently close to the best focal surface not to increase the size of the
geometrical image-spreads by more than a factor O(1). This means that
we consider only receiving surfaces lying within the image layer of §1.1.
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Such receiving surfaces can be specified by means of a displacement
function fu2e(®)t which, for each value of the normalized off-axis dis-
tance ©, measures to a sufficient approximation the focus shift of the
receiving surface relative to a selected field-reference surface.

As field-reference surface we choose the Petzval surface of S imaging
from the given object surface, namely the spherical surface, of curva-
ture 1/pp given by the equation

1 1 n—1(1 1 —2
L [ = (W‘)—_“—’) or ] (1.3)
PP Po 7 i 2’ T ]

which cuts the optic axis orthogonally at the paraxial focus. The quan-
tities r on the right of (1.3) stand for the paraxial radii of curvature of the
optical surfaces (including figurings); these radii, like pp, are taken
positively when the surface is concave towards the incident light;]
1/p, is the curvature of the object surface.

When the Seidel aberrations dominate the image, or, in particular,
when S is an aplanat,§ the order of magnitude of the image-spreads at
best focus is fu? and the thickness of the image-layer is O(fu?). In this
case we could use the Gauss plane as field-reference surface, with some
gain in simplicity in those cases where a flat field is aimed at in the design.
But when S is an anastigmat, with image-spreads of order fr? at best
focus, the image-layer lies everywhere within a distance O(fu?) of the
Petzval surface, and the Gauss plane could only be used as field-reference
surface in systems for which the Petzval curvature 1/pp = O(p?[f). We
call such systems flat-fielded anastigmats.

When the Petzval surface and not the Gauss plane is chosen as field-
reference surface, the approximation technique which is used for the
aplanats and for general centred systems can be adapted without

+ Or fu%e(®) in an anastigmat; it is more convenient to have @) = O(1) in both
cases.

1 We do not define the Petzval surface by applying (1.3) to the optical surfaces
divested of their figurings, because it is desirable (e.g. in discussing the Schmidt camera
and plate-mirror systems generally) to permit the presence of an r2-term, of coefficient
not exceeding O(fut), in the function which defines the figuring depths. The position
of the Petzval surface would not then be determined uniquely by the system and the
object surface. Conrady’s definition of the Petzval surface by means of ‘thin radial
pencils’ has the practical inconvenience that the surface so defined is not strictly
spherical.

§ By an aplanat we mean & system in which the first two Seidel errors (spherical
aberration and comsa) are reduced to very small values and the biggest remaining
aberration is the off-axis astigmatism used to flatten the field ; the image-spreads are
O(fu?). By an anastigmat we mean a system in which the image-spreads are O(fu®) in
the selected receiving surface. This approximates to the present commercial use of the

terms.
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essential change to the anastigmats. In the aplanats the displacement
function fu?e(®) = O(fu?); in the anastigmats the displacement func-

tion fule(®) = O(fu?).

1.3. The aberration function :

With each pencil of rays is associated an orthogonal family of surfaces
called the geometrical wave surfaces or wave-fronts. If the rays of a pencil
all pass through a single point, the wave-fronts are evidently spheres.
This is the case of an aberration-free geometrical image. In the more
usual case where the rays are not strictly concurrent, but pass withina
distance O(fu®) of each other, the wave-fronts are no longer strictly
spherical, but are distorted by amounts O( fut) from the spherical form.
Near a focus, the wave-fronts may now develop singularities; to avoid
this complication we exclude from the discussion wave-fronts whose
distance from a focus is small compared with f.

Each wave-front W is cut in a unique point Q by the ray through
the point (u,v) in the exit pupil; we call (u,v) the coordinate numbers of
the ray, and of the point Q on W. In its passage through the system, the
ray also defines coordinate numbers (u,v) on the optical surfaces and in
the entry pupil. In the entry pupil u, agree, to within O(r?), with the
values of the corresponding scale-normalized Cartesian coordinates there.

The principal point of W is the point of coordinate numbers (0,0)on W;
when W is in the image-space, this is the intersection with W of the
principal ray O’P’.

The reference sphere of W is defined in the image-space as the sphere,
centred on P’, which passes through the principal point of W. It can be
defined in the intermediate image-spaces of the system as the sphere
centred on the intersection of the ray (0, 0) with the corresponding inter-
mediate Petzval surface and passing through the principal point of W.

In a general centred system, W lies everywhere within a distance
O(fu*) of its reference sphere; in the (final) image-space of an anastigmat,
within a distance O(fu®).t

The aberration function ¢(u, v; ©) is defined for each u, v as the distance,
meagured along the optical ray of coordinate numbers (u,), by which
W lags behind its reference sphere. Evidently ¢(0,0; ®) = 0. As the
wave surface progresses, ¢(u,v; @) remains unchanged to within O( fu®)
in a general centred system; in the image-space of an anastigmat it
remains unchanged to within O(fu1°).

T The truth of this statement depends on the fact that the receiving surface lies in
the image-layer.
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In an aplanat or in a general centred system we can write
$(u,v; 0) = fu'®(u,v; 0);
in an anastigmat we can write
$(u,v; ©) = fu®®(u,v; 6),
the function ® being O(1) in both cases.

We call ¢ a ‘smooth’ function when the order of magnitude of o¢/ou
and o¢/ov is the same as that of ¢ itself. If the optical surfaces of S are
spherical, then ¢ will be smooth. ¢ will still be smooth if the surfaces
of S carry figurings of the type represented by an equation of the form

x2+ 2 x2+ 2\ 2 x2_|_ 2\ 3 $2 2

£~ fl"4|:62 hzy +c4( hzy) :|+fl"'666( hzy) 'l‘fI*sX( hzy )’ (1.4)
where the coefficients ¢,, ¢4, ¢z are O(1), h denotes the semi-diameter of
the axial pencil at the surface under consideration, x is O(1) and a smooth
function of its argument (x2-4-y2)/h%, and { denotes the figuring depth,
measured parallel to the z direction, at the surface-point of Cartesian
coordinates x, y. When only the Seidel errors of the system are under

discussion, the value of g is irrelevant and (1.4) may be used in the
simplified form

= [ e TR | rou). (1.5)

Useful surface deformations of more general type than (1.5) are
possible, for example those of the form

2 2 2 2\ 2 2 2\ 3
= e e EREY (5T | 0w,

where the error-term is a smooth function of (#2-+y2)/h?. Their effect is
to introduce third-order aberrations of a different type from those
occurring ‘naturally’ (that is to say, in centred systems with spherical
surfaces); the latter are of the third order and the third degree.t When
the object of introducing figurings is the better control of the classical
aberration coefficients, it is appropriate to use figurings of the special
form (1.4). We call these normal figurings.

The quantities x/h, y/h are evidently scale-normalized Cartesian
coordinates on the figured surface, which agree to within O(p?) with the
coordinate numbers u, v imprinted on this surface by the pencil from the
axial object point. If the object point moves off axis in the negative

+ That is to say, of the form fu®P(u, v; @)+ 0(fu®), where P = O(1) is a polynomial
of maximum total degree 3 in %, v, ® and the error-term is a smooth function of u, v.
Compare p. 16, below.
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y-direction, the new coordinate numbers u,v on the surface are con-
nected with x/k, y/h by equations

=7+0w),  v="Y110+00e),

in which the value of the constant [ is given to the necessary accuracy
by Gauss theory.

In a general centred system with normal figurings, imaging on the
Petzval surface, the monochromatic aberration function

$(u,v; 0) = f#“q)(’f(u, v; )+ 0(fpf), (1.6)

where

OF (u,v; 0) = [};al (w4222 +-a, Ov(ul+v?)4-ta; ©2(3ut4-02)] (1.7)

and the coefﬁments a,, @y, ag are O(1).1 H stands for the semi-diameter
of the entry pupil,{ so that the factor H/fu is comparable with unity.§
We call fu®f(u, v; O) the Seidel aberration function or the fourth-order
aberration function of the system working on the Petzval surface. The
corresponding aberration-deviations &,, 1, are given by the equation

(s m0) f"f( )6"+0(f1»5) (1.8)

or bo = &+O0(W), = ms+O(fu),
where & = fp¥ay u(u?+v?)4-2a, Quv+3a, O]
= fpla, v(uP+-v%)+a, O(u+3v%)+-a; ©%] }

If, introducing scale-normalized polar coordinates (r,$) in the exit
pupil, we write

(1.9)

U = rCos ¢, v = rsing, (1.10)

equations (1.9) can be given the more compact form
E+iny = fuda, PP +ia, 120 (2—e2$) +-a, r@%(2e't—e—i)].  (1.11)
When the receiving surface is displaced forward from the Petzval

surface by an amount fu?e(®)4 O(fu?), the main term ®*(u,v;0) is
replaced by

H 2
O*(u,v; 0) = B(u, v; ®)+%<u2+v2>(f—”) (0 (L1

t See for example A. E. Conrady, M.N. 80 (1919), 320-8. The presence of the error-
term in (1.6) allows a certain freedom of choice in the values assigned to a,, a,, a;; they
may be changed by amounts O(u?) without invalidating the representation.

1 Not the exit pupil.

§ H|f is equal to the numerical aperture of the emerging pencil.
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and approximate aberration displacements &, 7§ by £*, n*, where
EX L in* = f,u3[a,1 13¢ib 4 ja, 20 (2— %) |- a, rO%(2¢it — %) —l—fg e(@)rei‘/’],
1

(1.13)
the approximation error being O(fu5).

The equations

£ =&4+0(fw?), 1= 1*+0(fu) (1.14)
give an evaluation in the desired form (viz. a leading term of manageable
complexity plus an error-term) of the monochromatic aberrations in any
axially symmetric receiving surface lying in the image-layer. Inside the
square bracket of (1.13) the term a, 73¢% represents the primary spherical
aberration, ia, 720 (2—e?*#) the Seidel coma, [2a; @2+ (H/fu)e(®)]ei® the
focus shift relative to the reference surface, and —a,r®2— the off-axis
astigmatism, the deviations being measured from the principal point
of the image-patch. It makes no difference to the form of (1.13) and
(1.14) if £, » be measured perpendicular to the normal drawn from the
receiving surface at some point P” of the image-patch (the »-direction
being taken, as before, in the meridional plane through P”). For this
alters the values of £, n only by O(fu5).

(1.13), (1.14) allow the determination, to a sufficient accuracy, of the
best field surface corresponding to a given definition of image quality.
A procedure which is both analytically convenient and physically
acceptable in many practical applications is to define the effective
radius of a single monochromatic image-patch as the square root of the
expression 1

pl=- (£2+47?) dudv (1.15)
wu’+v“<1
and the effective monochromatic image radius over the working field
V' < V, on a given receiving surface as the square root of

1
g=2 f ® do (241?) dudv. (1.16)
i 0 ut+v3<1

This amounts to defining the effective radius of each image-patch as
the radius of gyration of its ray-density distribution about its principal
pointt and the effective monochromatic image radius over the working
field as the root mean square average of these effective radii over the
field area @ < 1.

+ The alternative (and in some ways more natural) definition by means of the radius
of gyration about the centre of gravity of the image-patch will be considered later.



