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PREFACE

My aim in this bock has been to give an sccount of the application
of statistical thermodynamics to certain modeis of solid, liquid, and
gaseous mixtures. There has been no attempt tc explore more than
a small part of the wide field covered by the word ‘mixture’. In fact
the only models discussed are those so simple that theory can be applied
to them quantitatively with the minimum of assumptions superposed
on those implied in the models and can, mcreover, be applied with the
use of only elementary mathematics. In spite of the great simplicity
of these models their study leads to problems sufficiently complicated
to be interesting.

The models can be expected to be useful representations of only the
simplest mixtures. In particular, mixtures containing electrolytes or
highly polar molecules are entirely excluded from consideration. Com-
parison between theory and fact is limited by the scarcity of precise
experimental measurements on the simpler systems. Where comparison
is possible the result is nearly always surprisingly gratifying.

There is a clear need for more extensive and precise measurements
of all the equilibrium properties of the simplest mixtures. If such
research work is stimulated by the theories described, then this book
will have served a useful purpose.

Here I should like to point out how much this subject owes to one
of the founder-editors of this series, the late Sir Ralph Fowler. Although
much of the theory has been developed since his death, there is scarcely
a section which does not bear the 1mprmt of ideas and techniques
originated or inspired by him. .

I have great pleasure in acknowledging my debt of gratitude to
Dr. M. L. McGlashan for his invaluable assistance in preparing this book
for the press. As well as contributing original work described in the
book, he has read the manuscript, checked the formulae, prepared the
- diagrams, compiled the indexes, and corrected the proofs.

I am indebted to the Royal Society and to the North Holland
Publishing Company for permission to copy certain diagrams. :
E. A G.
UNIVERSITY OF READING,

December 1951
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I

CLASSICAL THERMODYNAMICS OF
MIXTURES

1.01. Introduction. Free energy

THE classical thermodynamics of mixtures is such a vast subject that
an exhaustive treatment of it would require a book comparable in size
to this one. No attempt will be made to give such a treatment here.
"We must rather be content with a brief summary of the fundamental
principles and the most important formulae. The reader must go
elsewhere for detailed derivations.

We shall in this book be concerned only with systems in complete
thermal equilibrium, so that the temperature will always be uniform
throughout the system. As long as the temperature is kept constant,
that is to say under isothermal conditions, the most important thermo-
dynamic function is the free energy, so named by Helmholtz and
denoted by F. In any isothermal reversible proeess the increase in F,
denoted by AF, is equal to the work done on the system; alternatively
the decrease in F, denoted by —AF, is equal to the work done by the
gystem. Thus in reversible isothermal processes the free emergy is
analogous to the potential energy in reversible mechanical processes.

The particular kind of isothermal process which most concerns us
here is that of the mixing of two or more substances. We shall denote

by —A,, ¥ the decrease in free energy when one mole of & mixture is
formed from the constituent pure substances. A considerable part of
this book will be concerned with the quantity A, F' called the molar
Jree energy of mizing. It is important to know how this quantity is
‘determined experimentally, but this can be explained more conveniently
in § 1.06 after we have oonmdered some other thermodynamic functions.

1.02. Independent variables

The state of a liquid mixture may be completely defined by specifying
the absolute temperature 7', the pressure P, and the composition of
the liquid. This is moreover nearly always the most convenient manner
of specification. The same choice of independent variables is appro-
priate to a solid mixture provided all stresses other than an isotropic
pressure are excluded. For gaseous mixtures, on the other hand, it is

sometimes more convenient to choose the volume V rather than the
3596.71 B



2 . CLASBICAL THERMODYNAMICS OF MIXTURES §1.02

pressure P as an independent variable. Since a much greater part of
this book is devoted to liquids and solids than to gases, the set of
independent variables 7', P will be appropriate more often than the
set 7', V and therefore more detailed attention will be paid to the
former. '

The composition of & mixture is conveniently described by specifying
the number 7, of moles of sach species ». When we are interested only
in the relative composition, but not in the total amount of a mixture,
it is convenient to use the mole fractions z, defined by

%, = n/ 3 n,. (1.02.1)
The mole fractions are thus not independent, being related by
S, = 1. (1.02.2)
< .

We shall be mostly concerned with binary mixtures for which (2)

reduces to 2ty = 1. (1.02.3)
In this case it will be convenient to simplify our notation by writing
z instead of x; and 1—a instead of z,.

With this notation the molar free energy of mixing A, F of a binary
mixture is related to the molar free energy F,, of the mixture and the
molar free energies F, F3 of the two pure components by the definition

—A,F = (1—2)F+2F}—F,,. (1.02.4)

1.03. Thermodynamic potentials and fundamental equations
When the free energy F of any homogeneous phase is regarded as
a function of the independent variables 7', V, », its partial differential
coefficients with respect to the first two variables are given by the
simple relationsi oF [oT = —8, - (1.03.1)
oF [V = —P, (1.03.2)
where S denotes the eniropy. The partial differential coefficient of ¥
with respect to each n, is called the chemical potential of r and is denoted

by sy, Thus - 5F |om, = p,. (1.03.3)
Formulae (1), (2), and (3) may be combined to give
dF = —8dT—PdV+ 3 p.dn,. (1.03.4)
r

1 The notation for all thermodynamic quantities is the same as used in the author’s
book Thermodynamics (1948), North-Holland Publishing Co., and conforms with the
recommandations of the International Union of Physics (1948) and the International
Union of Chemistry (1948). Derivations of all the required thermodynamic relations
will be found in this or other stendard text-books on chamical thermodynamics.
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The free energy F is said to be the thermodynamic potenital for the
independent variables 7', ¥, n,, and formula (4) is called the fundaweﬂmc
equation for these variables.

Turning now to the more generally useful st of variables 7, F, %,
the relevant thermodynamic potential is the Qsbbe function G defined by

G = F4-PV, (1.03.5)
and the fundamental equation for these variabies js

dG = —8 dT+V AP+ 3 p,dn,. (1.03.8)

Isothermal changes in & are closely related to nel work defined as
follows. The work done on & system plus the inoreass in the guantity
PY is called the net work done on the system. Alternatively the work
done by the system iess the increase in the quantity £V is called the
net work done by the system. In particular, if the pressure is kepf
constant then the net work done by tho system may be defined as the
work done by the system other than the work due to the change AV
of its volume. With this definision of net work it follows from (&) that
in a reversible isothermal process the decreese —AG@ of the Gibbs
function is equal to the net work done by the system.

The eniropy S has the property that in any infinitesimal reversible
process the heat absorbed by the system is 7'4S. Consequently in any
reversible isothermal process the heat absorbed is 7' AS or A(7'S), where
as usual the symbol A is used to dencte the increase of any quantity
during the process consicdered. If, on the other hand, we consider an
isothermal process in which the pressure is mainiained constant through-
out, such a process being usually not reversible, then the heat absorbed
is equal to the increase AKH of the heat function H.

The functions G, S, and # are related by

H = G+T8, (1.03.7)
oG '
q = ——— @ =
8 o , (1.03.8)
oG
== —_— e 1' *
H=0 TaT (1.03.9)

Here and elsewhere when we use partial differential coefficients the
independent variables are always 7', P, n, unless the contrary is stated.
It follows immediately that for an isothermal process in which the
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initial and final pressures have specified values, usually but not
necessarily the same, we have "

AH = AG+4TAS, (1.03.10)
3 .

AS = _ﬁaa, 7 (1.03.11)

8 .

AH = AG—T 2 AG. (1.03.12)

The last formula is called the Gthhs—Helmholtz relation.

1.04. Partial molar quantities

The relations between partial molar quantities and the correspond-
ing extensive property may be illustrated by the case where the property
in question is the volume V. For the sake of brevity and simplicity
we shall consider a mixture of only two components, 1 and 2. As usual
‘we take as independent variables T, P, n,, n,. The partial molar volumes
Vi, V; are defined by

¥, = oV /on,, (1.04.1)
V, = oV/on,. - (1.04.2)

Incidentally the other partial differential coefficients of V are
‘ avV/[eT = oV, (1.04.3)
8V/oP = —«V, (1.04.4)

where « is the coefficient of thermal expansion and « is the isothermal
compressibility.
The total volume is related to the partial molar volumes by

V = n,V+n, ¥, (1.04.5)
When the composition of the mixture is varied at constant temperature
and pressure the variations of the two partial molar volumes are inter-
related by nydVy+nydVy =0 (T, P const.). (1.04.6)

Applying the above formulae to a quantity of mixture éonta.ining in
all one mole and denoting the mean molar volume by ¥,,, we have

W, = (1—a)f ¥, (1.04.7)
%Z”ﬁ = V—N. (1.04.8)
(l—x)%vlwa% — 0 (T, P const.). (1.04.9)

Precisely analogous formulae apply to any other extensive property
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such as F, G, 8§, or H. In particular we see from (1.03.6) and the
definition of partial molar quantities that
G = py, G, = py. (1.04.10)

Consequently for variations in the composition of a binary mixture at
constant temperature and pressure we have

o o
l._ ” —-—1 ——2 = o )e . .
(1—2) o +x o 0 (7, P const.) (1.04.11)

This important formula is called the Gibbs—Duhem relation.

Provided we keep to the independent variables 7', P, n,, n, or
T, P, z, then for each relation between extensive properties there is an
analogous relation between the corresponding partial molar quantities.
In particular as analogues of (1.03.7), (1.03.8), and (1.03.9) we have

H, = G+T8, H, = G,+T8,, . (1.04.12)
o6, G,
8 = —2p> Sy = — 27t (1.04.13)
oG 0@,
Hl = Gl— Tal__""l’ H2 aT (].04..14)
By virtue of (10) we may rewrite these formulae as
Hl = f“l+ TSI, Hg = [bg+ TSg, (1.04.15)
— _?E_l _ 3[‘3
8 = Tk S,._ o (1.04.16)
: N WA - JURY . . | (1.04.17)
T a7’ L

1.05. Chemical potentials and absolute activities

We have already collected many of the most important formulae
involving chemical potentials, but have not yet said anything about
the physical significance of these quantities. The chemical potentials
have two fundamental properties closely related to each other.

We have already drawn attention to the fact that the chemical
potential is identical with the partial molar Gibbs function. We have
also mentioned that in any reversible isothermal process the decrease
in the Gibbs function.is equal to the net work done by the system.
. It follows that if we consider the process of transferring one mole of
the substance 7 reversibly and isothermally from a large quantity of
one phage to a large quantity of another phase, then the decrease —Ap,
in the value of the chemical potential p, is equal to the net work done



8 CLASSICAL THERMODYNAMICS OF MIXTURES §1.05

by the system. This is the first fundamental property of the chemical
potential. ;

The second fundamental property of the chemical potential is the
follewing., When two phases are ai the same temperature the condition
for equilibrium distribution of the substance » between the two phsses
is that the chemical potential 1. should have the same value in both
phases. This condition is valid even when the two phases are ab
different pressures, for example when separated by a scmi-permeable

_membrane, provided always that they are at the same temperaturs.

The first fundamental property of the chemical poteniial enables us
to relate the difference in chemical petential between two phases to
experimentally determinable quantities. For the sake of simplicity we
sheii initially assume that the saturated vapour over each phase may
with sufficient accuracy be treated as a perfect gas. It must be
emphasized thab this is an assamption relating only to the behaviour
of the vapour; there is no restriction concerning the naturs of the liguid

- or solid phases. The transfer of one mole of the substance » from a
large quantity of a liquid or solid phase a to a large quantity of another
liquid or solid phase B can in principle be performed reversibly and
iscthermally by what may be called an isothermal three-stage distilla-
tion. By msans of pistons and appropriate semi-permeable membranes,
which the interested reader can readily devise, the process can be
performed in the following three stages:

() Evapurate one mole of r from & large quantity of the phase «
against a pressure equal to the ssturated partial vepour pressure
p& of v in the phase «.

(6) Expand or compress the one mole of vapour isothermally from
the pressure pF to a pressure oqual o the saturated vapour
prossure 8 of r in the phase B.

(¢) Cendense the one mole into a large quantity of the phase £ by
applying e constant pressure zf.

At all stages the temperature is suppoged maintasined constant by uase
of a suiteble thermogtat.

The work done by the system in the three stages Wnen “he vapour
ig treated as a perfect gas is as follows:

(@) RT—p2 Ve, {1.08.1)
(&) RTIn—B, (1.05.2)

(c) — BT B VB, (1.05.3)
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whers R denotes the gae constent and /2, VB denote the partial molar
volumes of r in the phases «, 8 respectively. By addition we find thab
the work done by the system is

oL
.'P-.Tln;%--{— (g8 VE —p2 V). {1.05.4)
r
It follows by definition that the net work done by the system is

1.08.5)

-

BT Pr,

.

Thus for eny two phases «, 8 at the same temperature wa have
(4
pE—pf = R.Tln%',. (1.05.8)
r

At this stage it is convenient to introduce another thermodynamio
quantity 2, celled the absolule activity defined by

pe = RTIn),. (1.05.7)
Since A, and u, are so intimately and simply interrelated mathematically
it is obviously unnecessary to uze both. Nevertheless in practioe it is
often convenient to use A, rather than u,. The convenience of the
absolute activity will reveal itself with use especially in statiatical
derivations.

Using the definition (7) we can rewrite (6) as
]
%= o (1.05.8)
Returning now to the second fundamental property of the chemical
potential, we seo that the condition that two phases «, B at the same
temperature should be in equilibrium with respect to the substance r
. may be expressed in the mathemstically equivalent forms

= b, (1.959)

pLIEEDA (1.05.10)
or provided only that the vapour may be treated as a perfect gas,

2% = pb. ’ (1.65.11)

Even if the vapour may not be treated as a perfect gas these reiations
still hold good provided p, is redefined as the fugacity instead of the
partial vapour pressure. The fugacity may be regarded simply as a
partial vapour pressure corrected for deviations from the behaviour
of perfect gases. The manner of applying such corrections wili be
described in Chapter VIII.
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Let: us now consider a binary mixture of substances 1 and 2, and
compare it with the two pure substances. We shall use the superseript
0 in symbols relating to either of the pure substances and shall omit
superscripts from symbols relating to the mixture. We then have the
following relations between several thermodynamic functions and the
partial vapour pressures:

AL. »
wy —py = RTlnA RTanT, (1.05.12)
1 1
0 A3 3
p3—pg = RTlnX; = RTlnzT’, (1.05.13)
3

A"-G = (1—2){ _;_aaln"2

- (1—x)1n%+x1n22. (1.05.14)
1

V2
The Gibbs-Duhem relation (1.04.11) may be rewritten in terms of
absolute activities

(1—2)

If we treat the vapour as a -perfect gas, or alternatively if we let p
denote fugacity instead of partial vapour pressure, we may replace
(18) by

61“14_ 31‘“ 8Indy _ o (7,Pocomst).  (1.05.15)

(1—)22P1, 20Dy _ o (P oonst).  (1.05.16)
ox ox

This important formula is called the Dukem—Margules relation.

1.06. Useful formulae for liquids and solids

As we have emphasized at an early stage, the convenient choice of
independent variables for liquid and solid phases is 7', P, n;, ng, or
T, P, z and therefore the appropriate thermodynamic potential is
@ not F. To avoid any possibility of confusion we have set out in full
the most important formulae in terms of the chosen independent
variables. Having done so, we may now point cut that at ordinary
pressures, for liquids at temperatures not too near the critical point
and for solids, all terms in PV or V dP are entirely negligible. This is
the case when the pressure is comparable to atmospheric, or is less.
Thus, although it is important to remember that &, not F, is the
thermodynamic potential for the independent variables 7', P, yet the
experimental or theoretical values of @ are usually indistinguishable
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from those of F. We may therefore usually, for liquids and solids, omit
all terms in PV or V dP. We then obtain for binary mixtures, inde-
pendently of the pressure provided it is not too great, such formulae as

4G = dF = —8 AT+ dn,+ pydng, (1.06.1)
d@, = dF, = —8,dT+(p,—p,) dz, (1.06.2)
a _z)”h‘" 42 M — 0 (T const., P not too great), (1.06.3)

(l—x)al;xpl-{-zal;xp* =0 (7 const.; P not too great). (1.08.4)

To the same approximation there is no need to distinguish between
the heat function H and the total energy U = H—PV.

To sum up, except when we are dealing with gases, we shall usually
make no mention of pressure. The implied assumption is that the
pressure is sufficiently small not to affect appreciably the values of
the relevant thermodynamic functions. An exceptional case is that of
osmotic equilibrium. The osmotic pressure II, of a binary mixture in
which the substance 1 is regarded as the solvent, is defined as the
extra pressure which must be applied to the mixture to raise the partial
vapour pressure of the solvent in the mixture to that of the pure solvent
at ordinary low pressure. The osmotic pressure is related to the partial
vapour pressure of the solvent by the formula

RT, 2%

7 lmp1 (1.06.5)
where p,, 7} denote partial vapour pressures over the solution and the
pure solvent respectively at the same external pressure. V, as usual
denotes the partial molar volume of the solvent in the mixture, and is
here assumed mdmtmgmsha.ble from the molar volume V{ of the pure
solvent.

==

1.07. Activity coefficients
We have mentioned that the absolute activities of the two com-

ponents depend on the composition so as to be interrelated by the
Duhem-Margules relation

(1—z )aln)\ 8ln)«2
ox

=0 (T const.). (1.07.1)

The simplest solution of this equation has the form
A = A{(1—=z), A= Me. (1.07.2)
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The same relations may be expressed in terms of partial vapour
pressures, or strictly fugacities,

py=pil—2), py=pix. (1.07.3)
As we shali see in Chepter III, the simplest kind of mixture which
existe in fact setisfies the above relations. Such mixtures are called
ideal. Whereas ideal mixtures are the exception rather than the rule,
they provide a conveniently useful standard with which te compare

other real mixtures. Fer this purpose it is expedient to introduce
welivity coefficients fy, f; defined by

Ay = M(1—2)f;, Ay = Mafy, (1.07.4)
or P =pY1—2)f1, Py = D3%fp. (1.07.5)
It then follows by substitution of (4) into (1) that the variations with

composition of the activity coefficients of the two species are inter-
related by

(1—z )ah‘f ah’fﬁ —0 (T const.).. (1.07.6)

The introduction of activity coelﬁcients of course gives us no quanti-
tative information concerning the properties of the mixture until their
values have been determined experimentally. Their introduction is
merely & convenience and a worthwhile one because the same activity
coefficients enter into all the equilibrium relations of the mixture.
We have already seen t¢hat the partial vapour pressures of the two
components are given by (5). By comparison with (1.06.5) we see that
the osmotic pressure II (for osmotic equilibrium with respect to the
species 1) is given by

RT

BT, 1

(I—a)fy
Weshall now record without proof the formulae relating to equilibrium
between the liquid solution and the pure zolid phase of one of the
components. For equilibrium at the temperature 7' between the solu-
ion and the solid phase consisting of the pure substance 1 the relation is -

1 AEN1 1
ln(1~==)f1 =~ (‘T‘_:i"_g) (1.07.8)
where 7 denotes the equilibrium tempersture for the pure liquid 1
and A,HY} denotes the molar heat of fusion of the pure substance 1.
To be more precise A, H} denotes an average value of this quantity
over the temperature range 7' to 7', but usually the variation of the

I = (1.07.7)




