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Pref ace

An alternative title for this book would perhaps be Nonlinear Analysis,
Bifurcation Theory and Differential Equations. Our primary objective is to
discuss those aspects of bifurcation theory which are particularly meaningful
to differential equations.

To accomplish this objective and to make the book accessible to a wider
audience, we have presented in detail much of the relevant background
material from nonlinear functional analysis and the qualitative theory of
differential equations. Since there is no good reference for some of the mate-
rial, its inclusion seemed necessary.

Two distinct aspects of bifurcation theory are discussed—static and
dynamic. Static bifurcation theory is concerned with the changes that occur
in the structure of the set of zeros of a function as parameters in the function
are varied. If the function is a gradient, then variational techniques play an
important role and can be employed effectively even for global problems. If
the function is not a gradient or if more detailed information is desired, the
general theory is usually local. At the same time, the theory is constructive
and valid when several independent parameters appear in the function. In
differential equations, the equilibrium solutions are the zeros of the vector
field. Therefore, methods in static bifurcation theory are directly applicable.

Dyncmic bifurcation theory is concerned with the changes that occur in
the structure of the limit sets of solutions of differential equations as param-
eters in the vector field are varied. For example, in addition to discussing the
way that the set of zeros of the vector field (the equilibrium solutions) change
through the static theory, the stability properties of these solutions must be
considered. In fact, there is an intimate relatjonship between changes of
stability and bifurcation. The dynamics in a differential equation can also -
introduce other types of bifurcations; for example, periodic orbits, homo-
clinic orbits, invariant tori. This introduces several difficulties which require
rather advanced topics from differential equations for their resolution.

The introductory chapter is designed to acquaint the reader with some
of the types of problems that occur in bifurcation theory. The tools from
nonlinear functional analysis are presented in Chapter 2. Some of this mate-
rial is used more extensively in the text than others, but all topics are a
necessary part of the vocabulary of persons working in bifurcation theory.
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SO{ne of the presentations and details of proofs are different from standard
ones.

Chapter 3 gives applications of the Implicit Function Theorem. These
are not bifurcation problems. Some of the applications were chosen because
the material is needed in later chapters. Others give good illustrations of
some of the tools in Chapter 2.

Chapters 4-8 deal with static bifurcation theory. Chapter 4 contains the
fundamental elements of variational theory together with serious applica-
tions to Hamiltonian systems, elliptic and hyperbolic problems.

Chapters 5-8 deal almost entirely with analytic methods in local static
bifurcation theory. In Chapter 5, for functions depending on a scalar param-
eter, conditions are given to ensure that there is always a bifurcation near
equilibrium. These conditions are based on the linear approximation and
are independent of the nonlinearities. Sorpe global results are also included.

In Chapter 6, the case of a one-dimensional null space for the linear
approximation is analyzed in detail under generic conditions on the quadratic
and cubic terms. The effects of symmetry are also discussed. Chapter 7 is
concerned with the case where the linear approximation has a two-dimen-
sional null space with the quadratic and cubic terms satisfying some nonde-
generacy conditions. Both of these chapters contain constructive procedures
in the analysis. Chapter 8 contains applications to the buckling of plates,
chemical reactions and Duffing’s equation.

Chapters 9-13 are devoted to dynamic bifurcation theory. Chapter 9
is concerned with the bifurcation from an equilibrium point in the case when
the linear approximation has either one zero eigenvalue or a pair of purely
imaginary eigenvalues. It is shown that all relevant information on existence
and stability is contained in the bifurcation function obtained via the alter-
native method or the method Liapunov—-Schmidt. The hypotheses on the
linear part are the typical situation for one parameter families of vector
fields. Chapter 10 is devoted to the other bifurcation phenomena that occur
in the plane for typical one parameter families of autonomous vector fields.

In Chapter 11, we discuss periodic planar vector fields and especially
Hamiltonian systems with a small damping and small periodic forcing term.
Emphasis is placed on the existence of subharmonic solutions and the role
of successive bifurcations through subharmonics in the creation of homo-
clinic points and a type of random behavior.

In Chapter 12, averaging, the theory of normal forms and the theory of
integral manifolds for ordinary differential equations are presented. This
material is relevant to the discussion of bifurcation to tori considered in that
chapter as well as the problems in Chapter 13, which is devoted to the be-
havior of the solutions of a differential equation near an equilibrium point
when the linear part of the vector field is typical of two parameter problems.

The topics in Chapter 14 on perturbation of the spectrum of linear oper-
ators is distinct from the ones in the previous chapters. It is included because
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the same methods can be applied to yield elementary proofs of some results
in this field.
The material in this book can be easily adapted to several types of one

semester courses. For example, four possible reasonable arrangements
could be:

I. Chapters 1, 5, 6, 7, 8 with Sections 2.3-2.8 from Chapter 2.
II. Chapter 2, 3, 4.
III. Chapters 1,9, 10 with Sections 2.3, 2.4, 2.5 from Chapter 2.
IV. Chapters 11, 12, 13.

Examples I, II, III are independent and require minimal knowledge of
differential equations. Example IV can only be taught after IIT and requires
more sophisticated concepts from differential equations.

The authors are indebted to numerous colleagues and students for their
assistance in this work. We especially thank John Mallet-Paret with whom
we had so many stimulating conversations about technique and method of
presentation. Luis Magalhdes also was of great assistance, especially in the
presentation in Chapter 11 and the examples in Chapter 12. We have also
been assisted by many persons in the preparation of the final manuscript.
We are indebted especially to Eleanor Addison, Dorothy Libutti, Sandra
Spinacci, Kate MacDougall, Mary Reynolds and Diane Norton. The second

author is also indebted to the Guggenheim Foundation for a Fellowship
during 1979-80.
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Chapter 1

Introduction and Examples

1.1. Definition of Bifurcation Surface

Every problem in applications contains several physical parameters which
may vary over certain specified sets. Thus, it is important to understand the
qualitative behavior of the system as the parameters vary. A good design
for a system will always be such that the qualitative behavior does not
change when the parameters are varied a small amount about the value for
which the original design was made. However, the behavior may change
when the system is subjected to large variations in the parameters. A change
in the qualitative properties could mean a change in stability of the original
system and thus the system must assume a state different from the original
design. In vague terms, the values of the parameters where this change takes
place are called bifurcation values. Knowledge of the bifurcation values is
absolutely necessary for the complete understanding of the system. Our
objective is to give an overall view of methods and results in this area. To
facilitate the introductory discussion, we first define the basic problem and
give a precise definition of a bifurcation value.

Suppose X, Z are Banach spaces, 4 is an open set in a Banach space,
M:A x X - Z is continuous together with its first Frechet derivative. The
set A will be called the parameter set. Sometimes, more derivatives on M
are required and it will always be assumed that M has as many derivatives
as necessary if it is not always explicitly stated. Consider the equation

(1.1) M(,x)=0

forieA,xe X.

A solution of Equation (1.1) is a point (4,x) € A x X such that Equation
(1.1) is satisfied. Let S = 4 x X denote the set of solutions of Equation (1.1)
and, for any 1 € 4, let

S, ={xe X:(4x)e S}

In a physical system, Equation (1.1) generally represents the equilibrium
positions of the system or, more generally, equations for the state of the
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system which satisfy certain boundary conditions. The dynamics of the
system are not included in Equation (1.1). Stability of a solution of Equation
(1.1) often requires a discussion of a differential equation du/dt = M(u, )
for u near x € S; and M related to M in some way.

If S is any closed set in A x X, one can always construct an M such that
S is the solution set for Equation (1.1). As a consequence, it is impossible to
give a complete description of S; as A varies. In the applications, the most
typical solution sets have components consisting of various pieces of the
solution set depicted in Figure 1.1.

X

)
I -

Figure 1.1

The basic problem is to discuss the dependence of the set S; on 4. Suppose
U is an open set in X. We say S, is equivalent to S, S; ~ S,,in UifS; n U
is homeomorphic to S, N U. We say 4, is a bifurcation point for (S, ~) if,
for any neighborhood V of 4o, there is an x, € §,,, a neighborhood U of x,
and 4,,4, in V such that §;,, ~ §,, in U. In particular, a point 4, is a bifurca-
tion point if S, # &, the empty set, and there is an x, € S, such that, for
any neighborhood U of (4y,x,), there are two distinct solutions (4,x,),
(A,x,) € U; that is, there is a A€ 4, x,;,x, € X, x, # Xx,, such that (4,x,),
(4,x5) € U and (4, x,), (4, x,) satisfy Equation (1.1). Whenever possible, it is
desirable to have the complete characterization of the solution set S in a
neighborhood U of a solution (44, x,) for which 4, is a bifurcation point.

The Implicit Function Theorem shows that the characterization is trivial
near some solutions (44, X).

Lemma 1.1. If (Aq,x,) € S and D, M(Ay, x,) has a bounded inverse, then there
is a neighborhood Q of (1o, x,) such that S N Q is a diffeomorphic image of a
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neighborhood of 1,; more precisely, there is a neighborhood A, of A, and a
continuously differentiable function x*: A, — X such that § © 2 = {(4,x*(4)),
Ae Ag}.

As a consequence of Lemma 1.1, the only points (g, X,) € S that require
further discussion are those for which D,M(4,, X,) is singular.

1.2. Examples with One Parameter

If X = Z, M(A,x) = Bx — Ax, where 1 € R and B: X — X is a bounded linear
operator, then any eigenvalue 1, of B is a bifurcation point. In fact, if 4, is
an eigenvalue of B, then, for any & > 0, there is an x, € X, |xo| = & such that
Bxy = A¢Xo. On the other hand, if

(2.1) . M(4,x) = Bx — Ax + O(|x| + |4 — Zo|*x|)

as x =0, 1 — A, where A, is an eigenvalue of B, the point 4, may not be a
bifurcation point. Notice that M(4,0) =0 for all 1€ A so that (4,0) is a
solution. In fact, suppose x = (x;, x,) € R? and consider the equations .

X)(x3 + x3) + Ax; =0

2.2
%3 —x1(x3 + x}) + Ax, =0."

Any solution of Equation (2.2) must satisfy (x? + x2)> = 0 for all A; that is,
x; = x5 = 0. Thus, 4 = 0 is not a bifurcation point and it is a double eigen-
value of the linear part of Equation (2.2).

To emphasize the role of the nonlinearities in Equatior: (2.2), we make
only a sign change and bifurcation will occur at A = 0. In fact, the equations

2 2 s
2.3) xz(x; + x;) + Axy=0
Xi(x7 + x3) + Ax; =0
have the solutions x, = x,, x,(2x} + 1) = 0. Thus, A =0 is a bifurcation
point.
It is also possible to give a similar example in R? for the case in which the
null space .4"(B) has dimension one. In fact, consider the equation
(24) x2+ix1 =0
ix;—x3=0

near (4g, X1 9, X20) = (0,0,0). The matrix B for this case is

=0 )
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which has 4, = 0 as an eigenvalue of multiplicity two but .#/(B) has dimen-
sion one. The above equation is equivalent to x, + Ax; =0, x (A2 +x3)=0
which has only the solution x, = x, = 0 for all 1 € R. Therefore, 1, =0 is
not a bifurcation point.

If 4, € R is a simple eigenvalue of B and M is given as in Relation (2.1),
then A, is always a bifurcation point. Although an even more general result
will be given in Chapter 4, it is instructive to do the simplest case here.
Suppose X =Z =R", A=R and M is given in Relation (2.1). If 4, is a
simple eigenvalue of B, then we may assume that B = diag(0, B,) where
By — 4ol is an (n — 1)x(n — 1) nonsingular matrix. If x = (y,2), yeR, z€
R"~!, then M(4, x) = 0 is equivalent to:

(a) uy = g(u, y,2)
2.3
" ) (Bo — Aol)z = (s, y,2)

where u = 4 — 4o, and both g, hare 0(y? + |z|* + p?(|y| + |2|)) as y,z,u > 0.
Since B, — 4,[ is nonsingular, one can invoke the Implicit Function Theorem
to solve Equation (2.5b) for z = z*(y,y) near p=0, y =0, z%u,0)=0.
Therefore, Equations (2.5) are equivalent to the scalar equation

(2.6) uy = g(u, y,z%(u, ).

Since z*(u,0) = 0, g(u,0,0) = 0, one can divide Equation (2.6) by y to obtain
the equivalent equation for y # 0

@7 u=7g(uy)

where g(u, y) = g(u, y, 2*(n, y))/y satisfies 3(0,0) = 0, D,g(0,0) # 0. Thus,
the Implicit Function Theorem implies there is a solution g = p*(y) for y
- near zero and p*(0) = 0. This proves u = 0 (or A = 4,) is a bifurcation point.

In Figure 2.1, we have depicted a possible solution set. Without further
restrictions on the nonlinearity, we can only assert that the curve u = u*(y)
is a smooth curve passing through (0, 0).

"

Lr

= p*y)

. u
I

Figure 2.1
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The procedure used in the above example is known as the method of
Liapunov-Schmidt or the method of alternative problems. The method in
abstract form is fundamental in bifurcation theory.

1.3. The Euler—Bernoulli Rod

To illustrate some other ideas that occur in bifurcation theory, let us con-
sider the Euler—Bernoulli problem of the buckling of a rod. In equilibrium
position, suppose the rod of length [ is represented in the (x, y)-plane by the
- set {(x,0),0 < x < I}, the rod is fixed at (0,0) and the other end (I,0) is
allowed to vary along the x-axis when it is subjected to a constant horizontal
force P at the right end. If s represents arc length along the displaced rod,
¢(s) represents the angle which the unit tangent vector to the rod makes
with the x-axis (see Figure 3.1) and it is assumed that the change in curvature

is proportional to the moment of force, then the equations describing the
" displacement of the rod are

d¢

Py = —k —

G3.1) v kds
ﬂ=sind>

ds

where k is a constant and the boundary conditions are
(32) yO)=y(l)=0, x(0)=0.
If P # 0, Equations (3.1) and Boundary Conditions (3.2) are equivalent to

%? +Asing =0
(3.3)
¢'(0) = ¢'(1) = 0.

Figure 3.1
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Let C[0,1] = {f:[0,I]— R: f is continuous together with derivatives
up through order k}. For any f € C*[0,1], let

| flx = max{sup[|f9s)|:0 <5 <1],j=0,1,...,k}.

Let X = {f € C*[0,1]:1'(0) = f'() = 0}, Z = C°[0,!] and define

d*¢ :
(3.4) F:Rx X->2Z, F(l,¢)=—d}7+lsmd).

Our objective is to determine all solutions of the equation
(.5) F(,¢)=0, (Ld)eRx X

which have ¢ “close” to the trivial solution ¢ = 0.
Let us first consider the linear problem

(3.6) D,F(4,00 =0
which is equivalent to '
d? s g
F + Mll =0
3.7
Yy'0)=y'(l)=0.

It is easy to verify that this equation has a nontrivial solution if and only
if A=21,=m?n*/I>, m=0,1,2,...and, for A= 4,, every solution is a
constant multiple of Y,,(s) = cos/4,s. For the original problem of the bar,
m = 0 is not possible since m = 0 and P # 0 implies that y(s) = 0,0 <s < L.
Figure 3.2 shows the displaced rod corresponding to A, for m = 1,2,3.

If ¢(s) is a solution of Equation (3.3) and p(s) = d¢(s)/ds, then ]

G(l’ P(S)y ¢(S)) = G(As p(O)a ¢(0)), 0<s< la
(3.8) . =y .
. G{i,p,0) = 5 + A(1 — cos ¢).
In the (p, ¢)-plane, the orbits are shown in Figure 3.3. The Boundary Condi-
tion (3.2) imply that we are only interested in those solutions satisfying
Relation (3.8) for which ¢ is small and which begin at s = 0 on the ¢-axis
and end at s = [ on the ¢-axis; that is, the only candidates for solutions are
those which are periodic in s and encircle (p,¢) = (0,0). Of course, the
solution may encircle the origin any number of times before it returns to
the ¢-axis at s = [; that is the period may be very small compared with [.

In terms of the original rod, this means more zeros (nodes) as shown in
Figure 3.2.



