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Preface

This book gives a systematic presentation of the theory of Fokker—Planck—
Kolmogorov equations, which are second order elliptic and parabolic equations for
measures. This direction goes back to Kolmogorov's works [527], [528], [529]
and a number of earlier works in the physics literature by Fokker [377], Smolu-
chowski [863], Planck [781], and Chapman [235]. One of our principal objects is
the elliptic operator of the form

Lapf = trace(AD*f) + (b, Vf), f€C&E(Q),

where A = (a%) is a mapping on a domain Q C R? with values in the space of
nonnegative symmetric linear operators on R? and b = (b') is a vector field on .
In coordinate form, L 4 is given by the expression

LA,bf = aijaz,-azjf + biaa:,' I

where we always assume that the summation is taken over all repeated indices.
With this operator L 4 5, we associate the weak elliptic equation

(1) sk =0
for Borel measures on 2, which is understood in the following sense:
(2) | fg Lapfdu=0 VfeCE(),

where we assume that b*, a® € L} (u). If u has a density o with respect to Lebesgue
loc

measure, then p is sometimes called “an adjoint solution” and the equation is called
“an equation in double divergence form”. We use the above term “weak elliptic
equation for measures”. The corresponding equation for the density p is

05,0z, (a7 0) — 0,,(b'0) = 0.
If A =1, we obtain the equation Ap — div (gb) = 0.

Similarly, one can consider parabolic operators and parabolic Fokker—Planck—
Kolmogorov equations for measures on Q% (0,7) of the type

Opp = L -
The corresponding equations for densities are
(3) Oo(x,t) = 8,04, (¥ (z, t)o(x, ) — B, (b (z,t)0(z, 1)),

and if we also have an initial distribution pp in a suitable sense, then we arrive
at the Cauchy problem for the Fokker-Planck-Kolmogorov equation. However,
it is crucial that a priori Fokker—Planck-Kolmogorov equations are equations for
measures, not for functions; this becomes relevant when the coefficients are singular

ix



7 PREFACE

or degenerate and, in particular, in the infinite-dimensional case, where no Lebesgue
measure exists. It is also important that equation (1) is meaningful under very
broad assumptions about A and b: only their local integrability with respect to the
regarded solution p is needed. These coefficients may be quite singular with respect
to Lebesgue measure even if the solution admits a smooth density. For example,
for an arbitrary infinitely differentiable probability density o on R¢, the measure
it = pdzx satisfies the above equation with A = I and b = Vp/p, where we set
Vo(z)/e(x) = 0 whenever p(z) = 0. This is obvious from the integration by parts
formula

[ 185+ Velo9eds= [ oaf+ [ (Vovfdr=0.
4 Rd ]Rd ]Rd

Since ¢ may vanish on an arbitrary proper closed subset of R%, the vector field b
can fail to be locally integrable with respect to Lebesgue measure, but it is locally
integrable with respect to p. Also note that in general our solutions need not be
more regular than the coefficients (unlike in the case of usual elliptic equations).
For example, if d = 1 and b = 0, then for an arbitrary positive probability density g,
the measure pu = pdx satisfies the equation L gpu = 0 with A = o,

In this general setting, a study of weak elliptic equations for measures on finite-
and infinite-dimensional spaces was initiated in the 1990s in the papers of the
first three authors. Actually, the infinite-dimensional case was even a starting
point, which was motivated by investigations of infinite-dimensional diffusion pro-
cesses and other applications in infinite-dimensional stochastic analysis (developed
in particular in the works of Albeverio, Hpegh-Krohn [21] as well as A.I. Kir-
illov [511]-[516]). It was realized in the course of these investigations that even
infinite-dimensional equations with very nice coefficients often require results on
finite-dimensional equations with quite general coefficients. For example, we shall
see in Chapter 10 that the finite-dimensional projections pu, of a measure p satis-
fying an elliptic equation on an infinite-dimensional space satisfy elliptic equations
whose coefficients are the conditional expectations of the original coefficients with
respect to the o-algebras generated by the corresponding projection operators. As a
result, even for smooth infinite-dimensional coefficients, the only information about
their conditional expectations is related to their integrability with respect to u,,
not with respect to Lebesgue measure; in particular, no local boundedness is given.

The theory of elliptic and parabolic equations for measures is now a rapidly
growing area with deep and interesting connections to many directions in real anal-
ysis, partial differential equations, and stochastic analysis. Let us briefly describe
the probabilistic picture behind our analytic framework. Suppose that & = (£ )i>0
is a diffusion process in R% governed by the stochastic differential equation

dEF = o(€7)AW, + b(ED)dt, & = .

The basic concepts related to this equation are recalled in § 1.3. The generator of
the transition semigroup {7} }+>o has the form L4 j, where A = 66 /2. The matrix
A = (a%) in the operator L 4 ; will be called the diffusion matriz or diffusion coeffi-
cient; this differs from the standard form of the diffusion generator by the absence
of the factor 1/2 in front of the second order derivatives, but is more ‘convenient
when one deals with equations. The vector field b is called the drift coefficient or
just the drift. The transition probabilities of £ satisfy the corresponding parabolic
equation. Any invariant probability measure p of £ (if such exists) satisfies (1),
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where p is called invariant for {T}};>¢ if the following identity holds:

(4) /Rdefdu=/Rdfdu Vf e CyRY),

Measures satisfying (1) are called infinitesimally invariant, because this equation
has deep connections with invariance with respect to the corresponding operator
semigroups. More precisely, if there is an invariant probability measure p, then
{T;}+>0 extends to L'(u) and is strongly continuous. Let L be the corresponding
generator with domain D(L). Then (4) is equivalent to the equality

/ Lfdu=0 VfeD(L).
Rd

Under reasonable assumptions about A and b, the generator of the semigroup
associated with the diffusion governed by the indicated stochastic equation coincides
with La; on C§° (Rd). As we shall see, invariance of the measure in the sense of
(4) is not the same as (2). The point is that the class C§°(R?) may be much
smaller than D(L). What is important is that the equation is meaningful and
can have solutions under assumptions that are much weaker than those needed for
the existence of a diffusion, so that this equation can be investigated without any
assumptions about the existence of semigroups. On the other hand, there exist
very interesting and fruitful relations between equations (2) and (4). For example,
if A and b are both Lipschitz and if A is nondegenerate, they are equivalent.

Letting P(z,t, -) be the corresponding transition probabilities (the distribu-
tions of ), the semigroup property reads

(5) P(z,t+ s, B) =/ P(u,s,B) P(z,t,du),
Rd

or in the case where there exist densities p(z,t,y),

p(z,t + 5,y) = / p(w, 5,9) pla, 5,5 du.
]Rd

Identity (5) is called the Smoluchowski equation or the Chapman—-Kolmogorov equa-
tion. In his seminal paper [527] Kolmogorov posed the following problems: find
conditions for the existence and uniqueness of solutions to the Cauchy problem
for (3) and investigate when (5) holds for these solutions. Now, 80 years later,
these problems are still not completely solved. However, considerable progress has
been achieved; results obtained and some related open problems are discussed in
this book.

We shall consider the following problems.

1) Regularity of solutions of equation (2), for example, the existence of densities
with respect to Lebesgue measure, the continuity and smoothness of these densities,
and certain related estimates (such as L2-estimates for logarithmic gradients of
solutions). In particular, we shall see in Chapter 1 that the measure p is always
absolutely continuous with respect to Lebesgue measure on the set {det A > 0}
and has a continuous density from the Sobolev class W'l’;cl with p > d provided
that the diffusion coefficients a* are in this class, |b| € L} (dz) or |b| € LT (),
and the matrix A is positive definite. Global properties of solutions of equations
with unbounded coefficients are studied in Chapter 3, where certain global upper
and lower estimates for the densities are obtained. We shall also obtain analogous
results for parabolic equations in Chapters 6-8.
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2) Existence of solutions to elliptic equation (2) and existence of invariant
measures in the sense of (4) as well as relations between these two concepts are the
subjects of Chapter 2 and Chapter 5. In particular, we shall see in Chapter 5 that
under rather general assumptions, for a given probability measure p satisfying our
elliptic equation (2), one can construct a strongly continuous Markov semigroup
{T}}i>0 on L'(p) such that u is {T}'}>o-invariant and the generator of {T}'};>0
coincides with Lap on C§°(R?). For this, an easy to verify condition is the exis-
tence of a Lyapunov function for L4 4. In the general case (without any additional
assumptions), a bit less is true, namely, p is only subinvariant for {7} };>0. We shall
see examples where this really occurs, i.e., where p is not invariant. Existence of
solutions to parabolic equations is addressed in Chapter 6.

3) Various uniqueness problems are considered in Chapters 4 and 5; in particu-
lar, uniqueness of invariant measures in the sense of (4) and uniqueness of solutions
to (2) in the class of all probability measures. Related interesting problems concern
uniqueness of associated semigroups {T}'}:>0 and the essential self-adjointness of
the operator L 4, on C§°(R?) in the case when it is symmetric. Parabolic analogues
are considered in Chapter 9.

First, we concentrate on the elliptic case, to which Chapters 1-5 are devoted.
In Chapters 6-9 similar problems are studied for parabolic equations; however,
parabolic equations appear already in Chapter 5 in relation to semigroups gener-
ated by elliptic operators. Chapter 10 is devoted to a brief discussion of infinite-
dimensional analogues of the problems listed in 1)-3). The results obtained so far
in the infinite-dimensional setting apply to various particular situations, although
they cover many concrete examples arising in applications such as stochastic par-
tial differential equations, infinite particle systems, Gibbs measures, and so on. The
main purpose of Chapter 10 is to give applications of finite-dimensional results and
to demonstrate the universality of certain ideas, methods, and techniques. Finally,
in Chapters 2, 6, and 9 we discuss degenerate equations and nonlinear equations
for measures; important examples of such equations are Vlasov-type equations. We
made some effort to minimize dependencies between the chapters; the proofs of a
number of fundamental results are rather difficult and can be omitted without any
loss of understanding of the rest.

Every chapter opens with some synopsis mentioning the chief problems and
results discussed. The last section of each chapter includes some complementary
subsections (the numbers in brackets within these internal contents refer to the
corresponding page numbers) and also brief historical and bibliographic comments
and exercises. In the Bibliography each item is provided with indication of all pages
where it is cited. The Subject Index also includes special notations used.
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CHAPTER 1

Stationary Fokker—Planck—Kolmogorov Equations

In this chapter we introduce principal objects related to elliptic equations
for measures, an important example of which is the stationary Fokker—Planck-
Kolmogorov equation for invariant probabilities of diffusion processes. Although
our approach is purely analytic, some concepts related to diffusion processes are
explained. Our principal problems are explained and in the rest of this chapter
we present the results on existence of densities of solutions to elliptic equations for
measures and their local properties such as Sobolev regularity. Thus, it turns out
that under broad assumptions our equations for measures are reduced to equations
for their densities. However, these equations have a rather special form, which leads
to certain properties of solutions that are different from the case of general second
order equations.

1.1. Background material

Throughout we shall use the following standard notation. The inner product
and norm in R? are denoted by (-,-) and | - |, respectively. The diameter of a set
Q is diam Q = sup, ,eq [# — y|. The open ball of radius r centered at a is denoted
by U(a,r) or U,(a). The unit matrix is denoted by I. The trace of an operator A
is denoted by tr A. The inequality A < B for operators on R? means the estimate
(Ah,h) < (Bh,h), where h € R?, for their quadratic forms. In expressions like
a“z;y; and bix; the standard summation rule with respect to repeated indices will
be meant. Set u™ = max(u,0), u~ = —min(xw,0), i.e., u=u" —u".

Throughout “positive” means “larger than zero”.

The class of all smooth functions with compact support lying in an open set
Q c R? is denoted by C§°(); the classes of the type CF(Q), CE(Q) of functions
with k continuous derivatives etc. are defined similarly; C(2) and Cp(2) are the
classes of continuous and bounded continuous functions. The class of functions
whose derivatives up to order k have continuous extensions to the closure of €2 is
denoted by the symbol C*(0). The support of a function f, i.e., the closure of the
set {f # 0}, is denoted by supp f.

A measure p on a o-algebra A in a space € is a function p: A — R! that is
countably additive: u(A) = Y07 | ju(A,) whenever A,, € A are pairwise disjoint
and their union is A. Such a measure is automatically bounded and can be written
as = put — p~, where the measures ut and p—, called the positive and negative
parts of j, respectively, are nonnegative and concentrated on disjoint sets Q2 € A
and QT € A, respectively, such that Q = QT UQ~. The measure

|| o= p +p”

1



2 1. STATIONARY FOKKER-PLANCK-KOLMOGOROV EQUATIONS

is called the total variation of the measure p. The variational norm or the variation
of the measure p is defined by the equality ||u|| := |u|(£2). Let M(Q) be the class
of all bounded measures on (£2,.4) and P(€2) the class of all probability measures
on (£, A) (i.e., measures p > 0 with u(2) = 1). The simplest probability measure
is Dirac’s measure 0, at a point a € €, it equals 1 at the point @ and 0 at the
complement of a. If > 0 and () < 1, then u is a subprobability measure.

It is useful to admit also unbounded measures with values in [0, 4+-0c] defined
similarly. Such a measure is called o-finite if the space is the union of countably
many parts of finite measure. The classical Lebesgue measure on R? provides an
example. Lebesgue measure of a set (2 will be occasionally denoted by |Q2|. For
most of the results discussed below we need only the classical Lebesgue measure
and other measures absolutely continuous with respect to it (see below).

We recall that the Borel o-algebra B(FE) is the smallest o-algebra containing
all open sets of a given space E. The term “a Borel measure y” will normally mean
a finite (possibly signed) countably additive measure on the o-algebra of Borel
sets; cases where infinite measures (say, locally finite measures) are considered will
always be specified, except for Lebesgue measure. A Borel measure p on a subset
in R4 is called locally finite if every point has a neighborhood of finite |x|-measure.

A finite Borel measure p on a topological space X is called Radon if, for every
Borel set B € X and every € > 0, there is a compact set K. C B such that
|#|(B\K;) < e. By Ulam’s theorem, on all complete separable metric spaces all
finite Borel measures are Radon. Throughout we consider only Borel measures.

The integral of a function f with respect to a measure p over a set A is denoted

by the symbols
[ f@utao), [ fan.
A A

For a nonnegative measure u and p € [1,00), the symbols L”(u) or LP(£2, 1) denote
the space of equivalence classes of p-measurable functions f such that the function
|f|? is integrable. This space is equipped with the standard norm

1 £llp = Ifllze ) = (/Q |fIP du)lfp.

The notation LP(§2) always refers to the classical Lebesgue measure; sometimes we
write LP (€2, dx) in order to stress this.

Let L®(u) denote the space of equivalence classes of bounded p-measurable
functions equipped with the norm || f||o := infy. ¢ sup, [g(z)|.

A measure p is called separable if L'() is separable (and then so are also all
spaces L?(u) for p < o0).

As usual, for p € [1,+00) we set

The classical Holder inequality says that

L|f9|dﬂ g ||f||P||g||P'7 f € Lp(.u')v g € LP’(.“*)'

It yields the generalized Hélder inequality

L'fl"‘fnldug”fl“px"'“fn“p,.a fie P (), pr' +-+pt =1



1.1. BACKGROUND MATERIAL 3

In addition, if pg > p+q, f € LP(u) and g € L(u), then by Holder’s inequality
fg € L"(p) and

(1.1.1) Ilfall- < flipllglle “if r=pg/(p+ @)

The integrability of a function with respect to a signed measure p is under-
stood as its integrability with respect to the total variation |u| of the measure u;
the corresponding classes will be denoted by LP(u) or LP(|u|) and by LP(U, p) or
LP(U,|p|) in the case where p is restricted to a fixed set U C Q.

For a Radon measure j, the class Ll (u) consists of all functions that are
integrable with respect to x on all compact sets.

Let T4 denote the indicator function of the set A, ie., Is(xz) = 1if z € A,
Is(z)=0if z & A.

A measure v on a o-algebra A is called absolutely continuous with respect to
a measure g on the same o-algebra if the equality |u|(A) = 0 implies the equality
v(A) = 0; notation: v < pu. By the Radon-Nikodym theorem this is equivalent to
the existence of a function p integrable with respect to |u| such that

V(A)=Lg(m)u(d:r), Ac A

The function g is called the density (the Radon—Nikodym density) of the measure v
with respect to the measure p and is denoted by the symbol dv/dp. It is customary
to write also

v=op-/ Or U= gu.

If v « pand p < v, then the measures v and p are equivalent; notation: v ~ p.
This is equivalent to the following property: v < pu and dv/dp # 0 |p|-almost
everywhere. The term “almost everywhere” is shortened as p-a.e. (for a signed
measure i, the term “p-a.e.” is understood as “|ul-a.e.”).

A sequence of Borel measures 1, converges weakly to a Borel measure p if for
every bounded continuous function f one has

tim [ fdp, = / f dg.

A family M of Radon measures on a topological space X is called uniformly tight
if for each € > 0 there is a compact set K. C X such that |p|(X\K.) < ¢ for
all measures u € M. According to the Prohorov theorem, a bounded family of
Borel measures on a complete separable metric space is uniformly tight precisely
when every infinite sequence in it contains a weakly convergent subsequence (see
Bogachev [125, Chapter 8]).

Given an open set  C R? and p € [1, +00), we denote by WP1(Q) or HP1()
the Sobolev class of all functions f € LP(£2) whose generalized partial derivatives
0y, f are in LP(£2). A generalized (or Sobolev) derivative is defined by the equality
(the integration by parts formula)

[ wusin== [ fonpds, vecr@.
U U

This space is equipped with the Sobolev norm

171

d
p1 = [[fllp + Z 10z, flp-
i=1



4 1. STATIONARY FOKKER-PLANCK-KOLMOGOROV EQUATIONS

We also use higher-order Sobolev classes WP*(Q) = HP*(Q) with k € N, con-
sisting of functions whose Sobolev partial derivatives up to order k are in LP({)
and equipped with naturally defined norms || f||, x, and fractional Sobolev spaces
HP"(Q) with noninteger r (the definition is given in § 1.8); the notation with the
letter H will normally be used in the case of fractional or parabolic Sobolev classes.

The class W°* () consists of functions with bounded Sobolev derivatives up
to order k; for example, W°!(£) is the class of bounded Lipschitzian functions.
Let Vf = (0. L5 905, f)-

The class Wg”k(ﬂ) is defined as the closure of C§°(2) in WP(Q).

The space C%(2) consists of Holder continuous of order 4 € (0, 1) functions f
on 2 with finite norm

Ifllos = sup|f(z)|+ sup |f(e) = f(u)l/lz— "

T,y€N,x#Y

Symbols like W (RY), WP (), LY, (2, 1) denote the classes of functions f
such that (f belongs to the corresponding class without the lower index “loc” for
every ¢ € C5°(R?) or ¢ € C§°(Q), respectively.

Let WP ~1(R%) denote the dual space to W?"!(R4) with p’ = p/(p—1), p > 1.

Let us define weighted Sobolev spaces or classes. Let a nonnegative measure p
on R? be given by a locally integrable density p with respect to Lebesgue mea-
sure. The class W?*(y) is defined as the completion of C5°(R?) with respect to
the Sobolev norm || - ||p,x,. defined similarly to || - ||, but with the measure p in
place of Lebesgue measure. If the density o is continuous and positive, then W»* (u)
coincides with the class of functions f & Wl’;‘ck(R") with || f|p.x,u < 00. Weighted
classes are used below only in a very few places, mostly the classes WP+ (u), more-
over, in such cases the measure p has some additional properties, for example,
possessing a continuous positive density or a weakly differentiable density, so that
the weighted Sobolev classes are well-defined (see, e.g., Bogachev [126, § 2.6]).

We shall need the class Wl‘cl,:“l(ﬂ) consisting of all functions f on an open set
such that the restriction of f to each ball U with closure in {2 belongs to W#v 1 (U)
for some py >d, and also the class L;iot(Q) defined similarly.

In the theory of Sobolev spaces and its applications a very important role is
played by the following Sobolev embedding theorem (the case p = 1 is called the

Gagliardo-Nirenberg embedding theorem).
1.1.1. Theorem. (i) If p > d or p=d =1, then one has the embedding
WPLRY) c Cb(R?) = C(RY) N L= (RY).
Moreover, there exists a number C(p,d) > 0 such that
(1.12) Ifloe < C@ D)l fllp1, £ € WPH(R?).

(ii) If p € [1,d), then WP (R?) C L9/(4=P)(R%), hence L9(R%)c W? —1(R?) if
qg=dp/(dp+p—d), p>1. Moreover, there is a number C(p,d) > 0 such that

(1.1.3) | Fllap/a-p) < C@,A)|fllp,1,  f € WPRY).

For any bounded domain 2 with Lipschitzian boundary analogous embeddings hold
with some number C(p,d, ). \

Note that p’ = gd/(d — ¢) in (ii). Actually in place of (1.1.3) the inequality
(1.1.4) 1/ ldp/(a—p) < Clo, )|IVSI]|, V¥ f e WP (R
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holds, which for p = 1 is called the Galiardo—Nirenberg inequality; it shows that an
integrable function on R% with an integrable gradient belongs in fact to the class
LY/(4=1)(R9) | hence also to all LP(R?) with 1 < p < d/(d — 1). For functions with
support in the unit ball U we obtain the inequality

(1.1.5) I£flle < COIVA, f €W @)
Note also the Poincaré inequality
(1.16) I = ol < CONVAN,: W), fu= [ fao

A function from the class W%1(R?) need not be even locally bounded, but on
every ball U it belongs to all L"(U).
For higher derivatives the following assertions are valid.

1.1.2. Corollary. One has the following embeddings.

(i) If kp < d, then WP*(R%) c L4»/(d—kp)(Rd),

(ii) If kp > d, then WP*(R?) C C(R%) N L>®(R%).

(iti) Wh4(RY) c C(R%) N L>=(RY).

Holder norms of Sobolev functions admit the following estimates.

1.1.3. Theorem. Let rp > d, let U be a ball of radius 1 in R%, and let
f e WP™(U). Then f has a modification fo which satisfies Holder’s condition

with exponent o = min(1,r — d/p), and there exists C(d,p,r) > 0 such that for all
x,y € U one has the inequality

(1.1.7) |fo(z) — foly)| < C(d,p, T)'If”xr.rlm —y|*
If fe W™ (U), then
(1.1.8) |fo(z) = fo(y)| < C(d,p.7)|| D" fllLrrylz — yl*,

where || D" f||1»y) denotes the LP(U)-norm of the real function

x> sup |D"f(z)(v1,...,v,)]|
Jui|<1

A similar assertion is true for domains with sufficiently regular boundaries, but
the constants will depend also on the domains.

Unlike the whole space, for a bounded domain ©Q C R, one has the inclusion
LP(Q2) ¢ L™(Q) whenever p > r. This yields a wider spectrum of embedding
theorems. We formulate the main results for a ball U C R9. Let us set W% := L9,

1.1.4. Theorem. (i) Let kp < d. Then
: . dp .
Writk Wi & —2 sk
Oy W), <z §€{01L...}

(ii) Let kp=d. Then
WPIth(U) c W9(U), g<oo, j€{0,1,...}.

If p=1, then Wit4L(U) c CI(U).
(iii) Let kp > d. Then

writkUy c ¢l (U), je{0,1,...}.

In addition, these embeddings are compact operators, with the exception of case (i)
with ¢ = dp/(d — kp).
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Proofs of all these classic results can be found in the book Adams, Fournier [3].
For p > d and any function f € W»1(R?) with support in a ball of radius R
one has the estimate
Ifllz= < Clp,d, R)|||V ]|,

Neither this estimate nor (1.1.4) hold for functions on bounded domains (for ex-
ample, for constant functions). Also a constant C'(p,d, R) cannot be taken inde-
pendently of R (excepting the case d = p = 1), as simple computations with the
functions f;(z) = max(1 — |z|/j,0) show.

Under broad assumptions about a set 2 in R?, the class W§ *(Q) (defined above
as the closure of C§°(£2) in W»*(Q)) admits the following description (see Adams,
Fournier [3, Theorem 5.29 and Theorem 5.37]).

1.1.5. Theorem. Let 2 be a bounded open set with smooth boundary. Then
the class W§ k(Q) coincides with the set of functions in WP*(Q) whose extensions
by zero outside Q2 belong to WPF(R?).

1.1.6. Corollary. Let 2 be a bounded open set with smooth boundary. Suppose
that f € WP¥(Q), where p > d. If the continuous version of f vanishes on 9§) along
with its derivatives up to order k — 1, then f € W 'k(Q).

Let Ur be an open ball of radius R. First we want to recall some simple
properties of the space W ~1(Ug), which is the dual of Wé”'l(UR) for p € (1, 00).
It is known (see, e.g., Adams, Fournier [3, Chapter III, Theorem 3.12]) that every
u € WP—1(Ug) can be written as

(1.1.9) u=08f, [ e€LP(Ug),i=1,...,4d
and, for all representations (1.1.9), one has

(1.1.10) lullwe.—1 gy < IfllLe@wz)-

By using scaling to control the norms of the embeddings, we arrive at the
following well-known lemma (see, e.g., Gilbarg, Trudinger [409, Theorem 7.10]).

1.1.7. Lemma. (i) Let d' < r < oo and R > 0. Then we have the continuous
embedding L™/t (Ugr) ¢ Wn—Y(Upg). In addition, there exists a number N
independent of R such that -

(1.1.11) llu"Wr,—l(UR) < NHuHer/(rH)(UR)

for all w € L™/ +4(Ug) and all R > 0.

(ii) Let 1 <r < d and R > 0. Then L'(Ur) C W™~Y(URg) and the embedding
operator is bounded. In addition, there exists a number N independent of R such
that

(1.1.12) lullwr—1 ) € NR™7 [l 1)

for allw € LY (Ug) and all R > 0. )
(iii) Let r = d', s > 1, and R > 0. Then L*(Ug) C W"~Y(Ug). In addition,
there exists N independent of R such that

(1.1.13) lallwe—s vy < NRZ||ull o )
for all u € L*(Ug) and all R > 0.



