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Chapter 1

Introduction to Wavelets

This chapter will provide an overview of the topics to be developed in the book. Its purpose is
to present the ideas, goals, and outline of properties for an understanding of and ability to use
wavelets and wavelet transforms. The details and more careful definitions are given later in the
book.

A wave is usually defined as an oscillating function of time or space, such as a sinusoid.
Fourier analysis is wave analysis. It expands signals or functions in terms of sinusoids (or,
equivalently, complex exponentials) which has proven to be extremely valuable in mathematics,
science, and engineering, especially for periodic, time-invariant, or stationary phenomena. A
wavelet is a “small wave”, which has its energy concentrated in time to give a tool for the
analysis of transient, nonstationary, or time-varying phenomena. It still has the oscillating wave-
like characteristic but also has the ability to allow simultaneous time and frequency analysis with
a flexible mathematical foundation. This is illustrated in Figure 1.1 with the wave (sinusoid)
oscillating with equal amplitude over —oo < t < oo and, therefore, having infinite energy and
with the wavelet having its finite energy concentrated around a point.

(a) A Sine Wave (b) Daubechies’ Wavelet ¢¥pog

Figure 1.1. A Wave and a Wavelet

We will take wavelets and use them in a series expansion of signals or functions much the
same way a Fourier series uses the wave or sinusoid to represent a signal or function. The signals
are functions of a continuous variable, which often represents time or distance. From this series
expansion, we will develop a discrete-time version similar to the discrete Fourier transform where
the signal is represented by a string of numbers where the numbers may be samples of a signal,

1



2 Introduction to Wavelets and Transforms Ch. 1

samples of another string of numbers, or inner products of a signal with some expansion set.
Finally, we will briefly describe the continuous wavelet transform where both the signal and the
transform are functions of continuous variables. This is analogous to the Fourier transform.

1.1 Wavelets and Wavelet Expansion Systems .

Before delving into the details of wavelets and their properties, we need to get some idea of their
general characteristics and what we are going to do with them [Swe96b].

What is a Wavelet Expansion or a Wavelet Transform?

A signal or function f(t) can often be better analyzed, described, or processed if expressed as a

linear decomposition by :
F(£) =" arthe(t) ' (1.1)
P

where £ is an integer index for the finite or infinite sum, a, are the real-valued expansion coeffi-
cients, and (t) are a set of real-valued functions of ¢ called the expansion set. If the expansion
(1.1) is unique, the set is called a basis for the class of functions that can be so expressed. If th

basis is orthogonal, meaning )

(Wi (t), e(t)) = / W (t) e(t) dt = 0 -y (1.2)

then the coefficients can be calculated by the inner product
o = (FO.00) = [ 1) wute)dt (13)

One can see that substituting (1.1) into (1.3) and using (1.2) gives the single a; coefficient. If
the basis set is not orthogonal, then a dual basis set Jk(t) exists such that using (1.3) with the
dual basis gives the desired coefficients. This will be developed in Chapter 2.

For a Fourier series, the orthogonal basis functions yj(t) are sin(kwot) and cos(kwot) with
frequencies of kwyg. For a Taylor’s series, the nonorthogonal basis functions are simple monomials
t*, and for many other expansions they are various polynomials. There are expansions that use

splines and even fractals.
For the wavelet expansion, a two-parameter system is constructed such that (1.1) becomes

&) =3 ajuvult) | (1.4)
k J

where both j and k are integer indices and the 1; k(t) are the wavelet expansion functions that
usually form an orthogonal basis.

The set of expansion coefficients a; x are called the discrete wavelet transform (DWT) of f(t)
and (1.4) is the inverse transform.

What is a Wavelet System?

The wavelet expansion set is not unique. There are many different wavelets systems that can be
used effectively, but all seem to have the following three general characteristics [Sweg6b).



Sec. 1.1. Wavelets and Wavelet Expansion Systems

1. A wavelet system is a set of building blocks to construct or represent a signal or function.
It is a two-dimensional expansion set (usually a basis) for some class of one- (or higher)
dimensional signals. In other words, if the wavelet set is given by ;x(t) for indices of
j»k = 1,2,---, a linear expansion would be f(t) = 37, 3>, ajk ¥;k(t) for some set of

coefficients a; .

2. The wavelet expansion gives a time-frequency localization of the signal. This means most
of the energy of the signal is well represented by a few expansion coefficients, a; k.

3. The calculation of the coefficients from the signal can be done efficiently. It turns out
that many wavelet transforms (the set of expansion coefficients) can calculated with O(N)
operations. This means the number of floating-point multiplications and additions increase
linearly with the length of the signal. More general wavelet transforms require O(N log(N))
operations, the same as for the fast Fourier transform (FFT) [BP85].

Virtually all wavelet systems have these very general characteristics. Where the Fourier series
maps a one-dimensional function of a continuous variable into a one-dimensional sequence of
coefficients, the wavelet expansion maps it into a two-dimensional array of coefficients. We will
see that it is this two-dimensional representation that allows localizing the signal in both time and
frequency. A Fourier series expansion localizes in frequency in that if a Fourier series expansion
of a signal has only one large coefficient, then the signal is essentially a single sinusoid at the
frequency determined by the index of the coefficient. The simple time-domain representation of
the signal itself gives the localization in time. If the signal is a simple pulse, the location.of that
pulse is the localization in time. A wavelet representation will give the location in both time and
frequency simultaneously. Indeed, a wavelet representation is much like a musical score where
the location of the notes tells when the tones occur and what their frequencies are.

More Specific Characteristics of Wavelet Systems

There are three additional characteristics [Swe96b, Dau92] that are more specific to wavelet
expansions.

1. All so-called first-generation wavelet systems are generated from a single scaling function
or wavelet by simple scaling and translation. The two-dimensional parameterization is
achieved from the function (sometimes called the generating wavelet or mother wavelet)
¥(t) by

Yik(t) = 29/29p(29t — k) kel (1.5)

where Z is the set of all integers and the factor 27/2 maintains a constant norm independent
of scale j. This parameterization of the time or space location by k and the frequency or
scale (actually the logarithm of scale) by j turns out to be extraordinarily effective.

2. Almost all useful wavelet systems also satisfy the multiresolution conditions. This means
that if a set of signals can be represented by a weighted sum of ¢(t — k), then a larger set
(including the original) can be represented by a weighted sum of (2t — k). In other words,
if the basic expansion signals are made half as wide and translated in steps half as wide,
t'hey lwill represent a larger class of signals exactly or give a better approximation of any
signal.



4 Introduction to Wavelets and Transforms Ch. 1

3. The lower resolution coeflicients can be calculated from the higher resolution coefficients
by a tree-structured algorithm called a filter bank. This allows a very efficient calculation
of the expansion coefficients (also known as the discrete wavelet transform) and relates
wavelet transforms to an older area in digital signal processing.

The operations of translation and scaling seem to be basic to many practical signals and signal-
generating processes, and their use is one of the reasons that wavelets are efficient expansion
functions. Figure 1.2 is a pictorial representation of the translation and scaling of a single
mother wavelet described in (1.5). As the index k changes, the location of the wavelet moves
along the horizontal axis. This allows the expansion to explicitly represent the location of events
in time or space. As the index j changes, the shape of the wavelet changes in scale. This allows
a representation of detail or resolution. Note that as the scale becomes finer (j larger), the
steps in time become smaller. It is both the narrower wavelet and the smaller steps that allow
representation of greater detail or higher resolution. For clarity, only every fourth term in the
translation (k = 1,5,9, 13, - - -) is shown, otherwise, the figure is a clutter. What is not illustrated
here but is important is that the shape of the basic mother wavelet can also be changed. That
is done during the design of the wavelet system and allows one set to well-represent a class of
signals.

For the Fourier series and transform and for most signal expansion systems, the expansion
functions (bases) are chosen, then the properties of the resulting transform are derived and

O O o
L I I
4.

2 3 4 5 6 7 8

Figure 1.2. Translation (every fourth k) and Scaling of a Wavelet Yp4



Sec. 1.1. Wavelets and Wavelet Expansion Systems

analyzed. For the wavelet system, these properties or characteristics are mathematically required,
then the resulting basis functions are derived. Because these constraints do not use all the degrees
of freedom, other properties can be required to customize the wavelet system for a particular
application. Once you decide on a Fourier series, the sinusoidal basis functions are completely
set. That is not true for the wavelet. There are an infinity of very different wavelets that all
satisfy the above properties. Indeed, the understanding and design of the wavelets is an important
topic of this book.

Wavelet analysis is well-suited to transient signals. Fourier analysis is appropriate for periodic
signals or for signals whose statistical characteristics do not change with time. It is the localizing
property of wavelets that allow a wavelet expansion of a transient event to be modeled with a
small number of coefficients. This turns out to be very useful in applications.

Haar Scaling Functions and Wavelets

The multiresolution formulation needs two closely related basic functions. In addition to the
wavelet 1(t) that has been discussed (but not actually defined yet), we will need another basic
function called the scaling function p(t). The reasons for needing this function and the details of
the relations will be developed in the next chapter, but here we will simply use it in the wavelet
expansion.

The simplest possible orthogonal wavelet system is generated from the Haar scaling function
and wavelet. These are shown in Figure 1.3. Using a combination of these scaling functions and
wavelets allows a large class of signals to be represented by
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Haar [Haal0] showed this result in 1910, and we now know that wavelets are a generalization of
his work. An example of a Haar system and expansion is given at the end of Chapter 2.

What do Wavelets Look Like?

All Fourier basis functions look alike. A high-frequency sine wave looks like a compressed low-
frequency sine wave. A cosine wave is a sine wave translated by 90° or /2 radians. It takes a
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Figure 1.3. Haar Scaling Function and Wavelet



