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Preface

This book is a result of our ten-year fruitful collaboration. It deals with integral
operators of harmonic analysis and their various applications in new, non-standard
function spaces. Specifically, we deal with variable exponent Lebesgue and amal-
gam spaces, variable exponent Holder spaces, variable exponent Campanato, Mor-
rey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable
exponent Lebesgue spaces, which unify two types of spaces mentioned above, grand
Morrey spaces, generalized grand Morrey spaces, as well as weighted analogues of
most of them.

In recent years it was realized that the classical function spaces are no longer
appropriate spaces when we attempt to solve a number of contemporary problems
arising naturally in: non-linear elasticity theory, fluid mechanics, mathematical
modelling of various physical phenomena, solvability problems of non-linear par-
tial differential equations. It thus became necessary to introduce and study the
spaces mentioned above from various viewpoints. One of such spaces is the variable
exponent Lebesgue space. For the first time this space appeared in the literature
already in the thirties of the last century, being introduced by W. Orlicz. In the be-
ginning these spaces had theoretical interest. Later, at the end of the last century,
their first use beyond the function spaces theory itself, was in variational prob-
lems and studies of p(x)-Laplacian, in Zhikov [375, 377, 376, 379, 378, which in its
turn gave an essential impulse for the development of this theory. The extensive
investigation of these spaces was also widely stimulated by appeared applications
to various problems of Applied Mathematics, e.g., in modelling electrorheological
fluids Acerbi and Mingione [3], Rajagopal and Ruzi¢ka [301], Ruzi¢ka [306] and
more recently, in image restoration Aboulaich, Meskine, and Souissi [1], Chen,
Levine, and Rao [42], Harjulehto, Hést6, Latvala, and Toivanen [127], Rajagopal
and Ruzicka [301].

Variable Lebesgue space appeared as a special case of the Musielak—Orlicz
spaces introduced by H. Nakano and developed by J. Musielak and W. Orlicz.

The large number of various results for non-standard spaces obtained during
last decade naturally led us to two-volume edition of our book. In this Preface to
Volume 1 we briefly characterize the book as a whole, and provide more details
on the material of Volume 1.
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Recently two excellent books were published on variable exponent Lebesgue
spaces, namely:

L. Diening, P. Harjulehto, P. Hast6 and M. Ruzicka, Lebesgue and
Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics,
Vol. 2017, Springer, Heidelberg, 2011,

and

D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Foundations
and Harmonic Analysis, Birkhduser, Springer, Basel, 2013.

A considerable part of the first book is devoted to applications to partial differen-
tial equations (PDEs) and fluid dynamies. In the recent book

V. Kokilashvili and V. Paatashvili, Boundary Value Problems for An-
alytic and Harmonic Functions in Non-standard Banach Function Spa-
ces, Nova Science Publishers, New York, 2012,

there are presented applications to other fields, namely to boundary value prob-
lems, including the Dirichlet, Riemann, Riemann-Hilbert and Riemann-Hilbert—
Poincaré problems. These problems are solved in domains with non-smooth bound-
aries in the framework of weighted variable exponent Lebesgue spaces.

The basic arising question is: what is the difference between this book and the
above-mentioned books? What new theories and /or aspects are presented here?
What is the motivation for a certain part of the book to treat variable exponent
Lebesgue spaces? Below we try to answer these questions.

First of all, we claim that most of the results presented in our book deal with
the integral transforms defined on general structures, namely, on measure metric
(quasi-metric) spaces. A characteristic feature of the book is that most of state-
ments proved here have the form of criteria (necessary and sufficient conditions).

In the part related to the variable exponent Lebesgue spaces in Volume 1
we single out the results for: weighted inequality criteria for Hardy-type and
Carleman—Knopp operators, a weight characterization of trace inequalities for
Riemann-Liouville transforms of variable order, two-weight estimates, and a solu-
tion of the trace problem for strong fractional maximal functions of variable order
and double Hardy transforms. It should be pointed out that in this problem the
situation is completely different when the fractional order is constant. Here two-
weight estimates are derived without imposing the logarithmic condition for the
exponents of spaces. We also treat boundedness/compactness criteria for weighted
kernel operators including, for example, weighted variable-order fractional inte-
grals.

For the variable exponent amalgam spaces we give a complete description of
those weights for which the corresponding weighted kernel operators are bounded /
compact. The latter result is new even for constant exponent amalgam spaces. We
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give also weighted criteria for the boundedness of maximal and potential operators
in variable exponent amalgam spaces.

In Volume 1 we also present the results on mapping properties of one-sided
maximal functions, singular, and fractional integrals in variable exponent Lebesgue
spaces. This extension to the variable exponent setting is not only natural, but
also has the advantage that it shows that one-sided operators may be bounded
under weaker conditions on the exponent those known for two-sided operators.
Among others, two-weight criterion is obtained for the trace inequality for one-
sided potentials.

In this volume we state and prove results concerning mapping properties of
hypersingular integral operators of order less than one in Sobolev variable exponent
spaces defined on quasi-metric measure spaces. High-order hypersingular integrals
are explored as well and applied to the complete characterization of the range of
Riesz potentials defined on variable exponent Lebesgue spaces.

Special attention is paid to the variable exponent Hélder spaces, not treated
in existing books. In the general setting of quasi-metric measure spaces we present
results on mapping properties of fractional integrals whose variable order may
vanish on a set of measure zero. In the Euclidean case our results hold for domains
with no restriction on the geometry of their boundary.

The established boundedness criterion for the Cauchy singular integral op-
erator in weighted variable exponent Lebesgue spaces is essentially applied to the
study of Fredholm type solvability of singular integral equations and to the PDO
theory. Here a description of the Fredholm theory for singular integral equations
on composite Carleson curves oscillating near modes, is given using Mellin PDO.

In Volume 2 the mapping properties of basic integral operators of Harmonic
Analysis are studied in generalized variable exponent Morrey spaces, weighted
grand Lebesgue spaces, and generalized grand Morrey spaces. The grand Lebesgue
spaces are introduced on sets of infinite measure and in these spaces bounded-
ness theorems for sublinear operators are established. We introduce new function
spaces unifying the variable exponent Lebesgue spaces and grand Lebesgue spaces.
Boundedness theorems for maximal functions, singular integrals, and potentials in
grand variable exponent Lebesgue spaces defined on spaces of homogeneous type
are established.

In Volume 2 the grand Bochner-Lebesgue spaces are introduced and some of
their properties are treated.

The entire book is mostly written in the consecutive way of presentation of
the material, but in some chapters, for reader’s convenience, we recall definitions
of some basic notions. Although we use a unified notation in most of the cases, in
some of the cases the notation in a chapter is specific for that concrete chapter.
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