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Preface

For the past three decades, the Fluidization Laboratory of Tsinghua University (FLOTU)
has been one of the leading research and development groups in the world working on the
fundamentals and applications of fluidized beds and a wide range of related technologies.
Under the dynamic leadership of Professor Jin Yong, ably assisted in the early years by
Professor Yu Zhiging and more recently by Professor Fei Wei, many innovations and
advances have been realized, addressing challenges in a wide range of areas. It is an honour
for me to have an opportunity to prepare this Preface for a volume summarizing the advances
and achievements of this excellent group.

The first section of this volume addresses Downers, reactors where particles travel
downwards co-currently with gas. No other group in the world has been as active as FLOTU
in performing fundamental research to understand the flow patterns of downers, mixing
phenomena, practical configuration issues and modelling. Thanks to their efforts, downers are
now considered seriously as alternative reactors with potential advantages for a number of
industrial reactions. The group has also pioneered novel riser-downer combinations with the
potential to combine the advantages of both risers and downers.

Section 2 covers the extensive research performed by the Tsinghua group on gas-solid
risers. Risers are widely used in industry for catalytic and non-catalytic gas-solid reactions.
Their adoption has been greatly facilitated by the wide-ranging research efforts of this group.
Among other achievements, they were among the first groups to recognize the importance of
exit configurations, the first to measure gas velocity profiles accurately, and one of the first to
measure suspension-to-surface heat transfer coefficients. Their pioneering work using
phosphorescent tracer particles has elucidated flow patterns in circulating fluidized beds.
They have also been innovative in exploring a range of novel geometries, and in modelling a
number of reactor configurations in which risers are featured.

The FLOTU group has also contributed to the understanding of fluidized beds operated in
the bubbling and turbulent fluidization flow regimes. Section 3 features work in these areas.
Once again this work is characterized by careful attention to detail coupled with imagination
and diligence. For example, unique pagoda-shaped baffles have been shown to have attractive
characteristics for improving the quality of fluidization. The transition from bubbling to
turbulent fluidization has been elucidated in a series of interesting papers.

The following section covers an extensive array of studies in which the FLOTU group has
contributed to the fundamentals and applications of two- and three-phase systems where liquid
constitutes one of the phases. The group has done pioneering work to extend the concept of
circulating fluidized beds to liquid-solid and gas-liquid-solid systems. Innovative work has also
been reported on clever multi-phase contactors with internal baffles and external loop airlift. In
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each of these cases, the group has demonstrated its ability to make complex multi-phase flow
equipment function, overcoming practical limitations encountered by previous research groups.
This body of work is essential reading for those seeking clever ways of reconfiguring mass
transfer equipment and reactors for a wide range of multi-phase processes.

The general theme of novel configurations for multiphase reactors and contactors is
extended in the next section of this book to cover systems where moving packed beds are
advantageous. This work, applied to reactors, hoppers and standpipes, again provides new
insights and innovative concepts for dealing with flow, mixing and contacting in practical
particulate and multi-phase systems.

Section 6 demonstrates that this group is capable not only of fundamental work and clever
design, but that it has also pioneered a number of unusual technologies for particular
applications. Of special interest is the work combining fundamentals and applications related
to nano-particles. Special reactor configurations have been devised to optimize these
processes, for example a two-stage fluidized bed reactor for simultaneously producing
hydrogen and carbon nano-tubes.

Mindful of the responsibility of engineers and scientists to preserve and strengthen the
planet for future generations, Professor Jin and his colleagues have recently turned their
attention to what is being called “Green Engineering and Technology.” Not content to just
think about or write about the implications of resource over-utilization, climate change and
narrow technical approaches, the FLOTU group offers a series of processes in section 7, in
which it is demonstrated that the coupling of seemingly unrelated processes or concepts can
have synergetic economic and environmental benefits. The volume closes with a thoughtful
and mature essay where the authors consider the ecological context of chemical engineering
work. This forward-looking piece sets a high standard and demonstrates the importance of
engineers recognizing that their work has consequences extending well beyond the narrow
context in which they usually work in industry, academia and government.

Many of the papers collected here have appeared in sources not readily accessible to the
scientific community in the west due to language and publishing restrictions. This volume
offers a truly impressive and exciting array of contributions that challenge the reader and
demonstrate the breadth and quality of this truly excellent and unique research group.

John R. Grace

Professor and Canada Research Chair
University of British Columbia,
Vancouver, Canada
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List of Common Symbols

average activity in a particle (catalyst)
Hamaker constant, J

reactor cross-section area, m?

surface area of the particle, m’

Archimedes number

Bodenstein number

concentration of tracer, kg/m’

concentration of A, mol/m’

drag force coefficient between particles and gas
drag force coefficient between a single particle and gas
trag coefficient

particle diameter, m

mean diameter of particle, m

reactor diameter, m

distribution factor

diffusion coefTicient, m*/s

axial particle dispersion coefficient, m*/s

radial particle dispersion coefficient, m*/s
pressure gradient in the standpipe, Pa/m
restitution coefficient

dissipation rate of turbulent kinetic energy of gas phase, m?/s’
interparticle attractive force, N

drag force on particle, N

drag force, N/m’

friction between fluid (particle) and wall, N/m’
effective weight of particle, N

Froude number

gravitational acceleration, g = 9.8 m/s’

solids flux, kg/(m® * s)

distance to downer entrance or height of fluidization bed, m
heat transfer coefficient, W/(m’ * K)

turbulent kinetic energy, m*/s

reaction rate constant, s~

deactivation rate constant, m>/(mol * s)



reaction rate constant, m’/ (kg s)

reaction rate constant, kmol/(kgcat * s)

length of the first accelerating zone, m

phase ratio

mass flow rate, kg/s

molecular weight of product A, kg/kmol
molecular weight of product B, kg/kmol

reaction order

pressure, Pa

Peclet number

flow feed or gas flowrate, m®/s

radial position or radial coordinate, m

reaction rate , kmol/(kgcat * s)

dimensionless radial position

universal gas constant, R = 8.314 J/(mol * K)
radius of downer or riser, m

Reynold number

swirling-to-primary air ratio

Schmidt number

Sherwood number

reaction time, s

temperature, K

superficial fluid velocity at incipient bubbling, m/s
superficial gas velocity, m/s

superficial gas-splitting velocity based on the cross-section area of the standpipe, m/s
velocity of the liquid and solid, m/s

incipient fluidization velocity of the particles or superficial fluid velocity at incipient
fluidization, m/s

terminal particle velocity, m/s

velocity, m/s

axial particle velocity, m/s

volume of liquid in the reactor, m*

total gas flux, m*/h

weight of the catalyst, kg

weight of the catalyst particle, kg

mass flow rate of gas, kg/s

length from the reactor inlet, m

weight fraction of substance A in the mixture

ratio of volumetric flowrate of bubbles and excess gas flowrate
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z height of fluidization bed or axial coordinate, m
VA surface distance between particles, m
Subseripts

0 initial value

f fluid

g gas phase

1 liquid phase

P particle

s solid phase

cat catalyst (appear in physical units too)

cal calculated

dil dilute

exp experimental

in inlet

sus suspension flow

t turbulence

w wall

Greek letters

£ bed voidage

&, solid holdup

Epg voidage at incipient fluidization

A, total friction coefficient between gas-particle and wall
Ag friction coefficient between gas and wall

P density, kg/m’

n effectiveness factor of internal diffusion in the catalyst
u viscosity, Pa * s

UL viscosity of liquid , Pa * s

a, 0 angle

Ap, total pressure drop, Pa

Apymax  maximum total pressure drop, Pa

AFE reaction activation energy, J/mol

AEy deactivation activation energy, J/mol
Pw, Pa fraction of solids carried up by a bubble within its wake and drift
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1 Gas-Solid Cocurrent Down-Flow Fluidized Beds

(Downers)

1.1 Hydrodynamics of downers
1.1.1 State-of-the-art review of downer reactors

1.1.1.1 Introduction

In the last two decades, considerable progress has been made in developing and applying
riser reactors as an efficient gas-solids reactor. On the one hand, riser reactors offer significant
advantages over conventional bubbling fluidized bed reactors, such as high gas-solids contact
efficiency, high gas and solids throughput and the ability to handle cohesive particles. On the
other hand, they may suffer from severe solids backmixing due to non-uniform gas and solids
flow. Especially in residual oil catalytic cracking, it would be advantageous to have short
residence time (less than 1.0 s) with narrower residence time distributions and flow pattern
closer to the ideal plug flow.

The disadvantages of the riser reactor caused by the hydrodynamic effects of both gas and
solids flowing against gravity, may be overcome in a new type of chemical reactor-downer
reactor, in which the flow direction of both the gas and the solids are downwards in the same
direction as gravity. In this paper, the flow mechanism, hydrodynamics, mixing, numerical

simulation and applications of downer reactor are addressed.

1.1.1.2 Brief history

In the early 1970s, Stone and Webster began to develop a new type of reactor, mainly
consisting of a solids-gas feed mixer, a downflow reactor section and a specially designed
gas-solids separator“’zl. This reactor is reported to offer very short residence times (~200 ms),
near plug flow and a high temperature reaction environment. Applying the same principle, an

ultra-rapid fluidized bed reactor was proposed for biomass pyrolysis®¥

. To respond to
potential industrial applications of downer reactors, researchers have begun to be interested in
the fundamental study and applications of downers. Table 1 lists reported studies on downer
reactors according to research topic considered in the last decade. Principal experimental

methods are listed in Table 2. It can be seen that in the recent years more and more techniques
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have been adopted to investigate various aspects of downer reactors, such as the
hydrodynamics, gas-solids mixing behavior and heat transfer. All these efforts greatly enhance
the knowledge of downer reactors and are beneficial to industrial applications.

Table1 Research on downer reactors

Research regime Literature list

Overall flow behavior [4-10]

. Flow section and axial profiles [11-16]
Hydrodynamics -

Radial profiles [11,12, 14-21]}

Mixing and transfer behavior [22-30, 8]
Transient analysis and cluster [31-35]
Distributor and entrance region [25,13,36-40,8,10,34]
Modeling [41-46]
Reactor applications [47-51,3,42]

Table 2 Experimental methods in the research on downer reactors

Experimental methods Applications Literature list
Aspirating probe device Local solid flux [9]
Capacitance sensor Local solids density [16,32]

Local particles velocity, solids

Fiber-optic probe density, clustering phenomena

[17,12,25,31,45,14,15,33,19]

Helium or hydrogen tracer Gas dispersion [24,30]
LDV sensor Local particle velocity [6,12,18]

Miniature  cylindrical  heat
transfer probe, heat flux probe

Heat transfer coefficients [28,27]

PTD of particles, radial and axial

Phosphoresent particle tracers mixing behavior

[22-24,52,26]

Thermal method measuring | Contact efficiency between gas and

temperature changes solids [39]
X-ray or gamma-ray tomography | Local solids density [37,38,16]
X-ray imaging Local solids density [91

1.1.1.3 Applications

(1) FCC and heavy oil cracking

Short contact time and plug flow are desirable for catalytic cracking of heavy oil. In
practical applications, downers have potential for this application(see Fig. 1). In 1993, UOP
ran a down-flow short contact commercial reactor, called MSCC with 5% increase of yield.
Figs. 2 and 3 show results from small hot model test unit run under typical conditions for FCC
and deep catalytic cracking (DCC) processes in comparison with riser reactors. It is shown that
the yield of gasoline increased by more than 5%, while the dry gas and coke decreased by
more than 5% by switching to a downer reactor. At the same time, a number of patents have

been applied as shown in Fig, 4°>'%,



