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“The use of SPICE-generated lookup tables, as described in this book, provides an
excellent compromise... as a result, a considerable amount of intuition can be built
up. Such design procedure is highly recommended to whoever wants to gain insight
by doing analogue design, without losing the accuracy of real SPICE simulations.”

“This book fixes what has been broken with analog design for more than twenty
years. | recommend it to experts and novices alike.”

“The authors present a clever solution to capture the precision of the best MOSFET
models, current or future, in a comprehensive and efficient design flow compatible
with nanometric CMOS processes. ...[Y]ou will also enjoy a wealth of invaluable
information to deepen your analog design skills.”

Discover a fresh approach to efficient and insight-driven analog integrated circuit
design in nanoscale-CMOS with this hands-on guide.

* Expert authors present a sizing methodology that employs SPICE-generated
lookup tables, enabling close agreement between hand analysis and simulation.

* lllustrates the exploration of analog circuit tradeoffs using the g_/I, ratio
as a central variable in script-based design flows, captured in downloadable

Matlab code.

* Includes over forty detailed worked examples, including the design of
low-noise and low-distortion gain stages, and operational transconductance
amplifiers.

Whether you are a professional analog circuit designer, a researcher, or a
graduate student, this book will provide you with the theoretical know-how and
practical tools you need to acquire a systematic and re-use oriented design style
for analog integrated circuits in modern CMOS.
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Discover a fresh approach to efficient and insight-driven analog integrated circuit
design in nanoscale-CMOS with this hands-on guide.

» Expert authors present a sizing methodology that employs SPICE-generated
lookup tables, enabling close agreement between hand analysis and simulation.

« Illustrates the exploration of analog circuit tradeoffs using the g, /I, ratio as a cen-
tral variable in script-based design flows, captured in downloadable Matlab code.

* Includes over forty detailed worked examples, including the design of low-noise
and low-distortion gain stages, and operational transconductance amplifiers.

Whether you are a professional analog circuit designer, a researcher, or a graduate
student, this book will provide you with the theoretical know-how and practical
tools you need to acquire a systematic and re-use oriented design style for analog
integrated circuits in modern CMOS.
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“Analog design generates insight, but requires expertise. To build up such expertise,
analytic models are used to create design procedures. Indeed, analytic models easily
allow device sizing from specifications. They lack accuracy, however. The models of
present-day nanometer MOS transistors have become rather complicated. On the
other hand SPICE simulations do provide the required accuracy but don’t generate
as much insight. The use of SPICE-generated lookup tables, as described in this
book, provides an excellent compromise. The accuracy is derived from SPICE and
the design procedure itself is made through MATLAB employing parameters like
g./Ip. As a result a considerable amount of intuition can be built up. Such design
procedure is highly recommended to whoever wants to gain insight by doing analog
design, without losing the accuracy of real SPICE simulations.”

Willy Sansen, KU Leuven

“With the advent of sub-micron MOS transistors more than two decades ago, trad-
itional design based on the square-law model is no longer adequate. Alternatives
such as ‘tweaking’ with SPICE or relying on more sophisticated device models do
not provide the circuit insight necessary for optimized design or are too mathem-
atically complex.

The design methodology presented in this book overcomes these shortcomings.
A focus on fundamental design parameters — dynamic range, bandwidth, power
dissipation — naturally leads to optimized solutions, while relying on transistor data
extracted with the simulator ensures agreement between design and verification.
Comprehensive design examples of common blocks such as OTAs show how to
readily apply these concepts in practice.

This book fixes what has been broken with analog design for more than twenty
years. I recommend it to experts and novices alike.”

Bernhard Boser, University of California, Berkeley

“The authors present a clever solution to capture the precision of the best MOSFET
models, current or future, in a comprehensive and efficient design flow compatible
with nanometric CMOS processes. In this book, you will also enjoy a wealth of
invaluable information to deepen your analog design skills.”

Yves Leduc, Polytech Nice Sophia
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Symbols and Acronyms

A, Small-signal voltage gain

Ay Low frequency small-signal voltage gain

Aier Intrinsic gain

Ayr Pelgrom coefficient for threshold voltage mismatch
Ag Pelgrom coefficient for current factor mismatch
ACM Advanced Compact Model

CLM Channel Length Modulation

CSM Charge Sheet Model

C Capacitor value

C,. Oxide capacitance per unit area

s Gate-to-bulk capacitance

2. Gate-to-drain capacitance

Ces Gate-to-source capacitance

C Junction capacitance

Cc Compensation capacitance

CMOS Complementary Metal Oxide Semiconductor
Co Self-loading capacitance of an amplifier

D Diffusion constant

DIBL Drain-Induced Barrier Lowering

EKV Enz, Krumenacher and Vittoz compact model
FO Fan-out (ratio between load and input capacitances of a circuit)
Vi Frequency in Hz

1 Cutoff frequency (—3dB frequency)

fr Transit frequency

fu Unity gain frequency (where |4,] = 1)

24 Output conductance

Zm Gate transconductance

Lok k't derivative of 1, with respect to ¥

b Bulk transconductance

Goms Source transconductance

HD,, HD;  Fractional harmonic distortion of order 2, 3, ...
[ Normalized drain current

IGS Intrinsic Gain Stage
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Symbols and Acronyms Xiii

DC drain current

Specific current

Square specific current (W = L)

Unary specific current (W =1 um)

Drain current density (1,/ W)

Gate length

Impurity concentration

Subthreshold slope factor

Normalized mobile charge density

Normalized mobile charge density at the source and drain
Mobile charge density

Right Half Plane

Threshold voltage sensitivity factor with respect to V¢
Specific current sensitivity factor with respect to V¢
Thermal voltage k7/g

DC voltage component at node x

AC voltage component at node x

Total voltage at node x, vy = Vy + v,

Early voltage

DC component of input voltage

AC component of input voltage

Total input voltage v, =V, + v,

Differential input voltage, AC component

Source, gate and drain voltage with respect to bulk (DC)
Gate and drain voltage with respect to the source (DC)
Incremental gate and drain voltage with respect to the source
Incremental gate and drain voltage amplitude (sinusoid)
Pinch-off voltage with respect to the bulk

Drain saturation voltage

Saturation velocity of mobile carriers

Threshold voltage

Gate overdrive voltage, Vis— Vi

Transistor width

Weak, moderate and strong-inversion

Current factor' (uC,WI/L)

Backgate effect parameter

Thermal noise factor for n-channel and p-channel devices?
Mobility

Low-field mobility

Normalized transconductance efficiency

! The symbol B is also used to denote the feedback factor in amplifier circuits. The distinction is usually
clear from the context.
2 The distinction from the backgate effect parameter 7y is usually clear from the context.
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Yy Surface potential

[0} Angular frequency (2xf)

, Angular cutoff frequency (2nf))
(o Angular transit frequency (2nf;)

@ Angular transit frequency considering only C,, (instead of C,,)
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