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Dynamic Meteorology.

By
A.ErL1ASSEN and E. KLEINSCHMIDT jr.?
With 41 Figures.

I. Basic theory.

a) Physical properties of atmospheric air.

1. Fluid models. All motions in the atmosphere connected with weather are
formed as a result of heating from the sun. The atmosphere acts as a kind of
heat engine, continually converting heat into mechanical energy; and mechanical
energy is in turn converted back to heat by frictional dissipation. This indicates
that neither pure hydrodynamics, nor pure thermodynamics suffices to explain
the motions in the atmosphere; the appropriate science is a combination of both,
which is called “ physical hydrodynamics®’.

In order that a fluid shall be able to serve as the working substance of a heat
engine, which converts heat into mechanical energy by circular processes without
any progressive change of state of the fluid, it is necessary that the possible
thermodynamic states of each fluid particle form a two-dimensional manifold,
at least. This is the case for atmospheric air, where two functions of state, e.g.
pressure and density, are free to vary independently under the influence of heat
sources.

The theory of the motion of such a general fluid is rather complicated, and
very few results have been obtained except some general theorems. Most theories
in dynamic meteorology have been based on a simpler fluid model where the
possible thermodynamic states of each fluid particle form a one-dimensional
manifold. Such fluids were named piezotropic by V. BJERKNES and coll. [2].

A piezotropic fluid cannot convert heat into mechanical energy by circular
processes, and the assumption that the air is piezotropic is therefore inadequate
to explain the maintenance of atmospheric motions against frictional dissipation.
Nevertheless, the concept of a piezotropic fluid has proven useful in the study of
motion phenomena of relatively short time scale which utilize energy stored as
potential, internal or kinetic energy. The hydrodynamics of piezotropic fluids
has therefore played an important role in dynamic meteorology. In a piezotropic
fluid, there is for each particle a relation between density ¢ and pressure 4. In
the most general case, this equation of piezotropy may be different for all particles;
it may then be written o=, 4, B,0), (1.1)

where 4, B and C are a set of LAGRANGian coordinates, which define individual
patticles. Letting the symbol D denote the differential derived from the individual

change of a quantity, i.e. the change experienced by a fluid particle, one has for
the LAGRANGian coordinates

DA DB _ DC
D — bt — b 0 (1.2)

1 Chap. I to III are written mainly by ELiassEN, Chap. IV and V' by KLEINSCHMIDT.
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2 A. EriasseN and E. KLeiNscEMIDT: Dynamic Meteorology. Sect. 2.

The differential quotient Do of
V=5 =% (1.3)

is a measure of the compressibility and is called the coefficient of piezotropy.

It is not necessary that as many as three LLANGRANGian coordinates appear
in the equation of piezotropy. In the case most commonly considered, the adia-
batic motion, this equation contains just one such parameter, viz. the entropy s.
The equation of piezotropy then assumes the form

e=1(p,s) (1.4)
Ds)Dt= 0. (1.5)

In this case, the relationship between pressure and density will be the same for
particles with the same entropy, but will be different for particles with different
entropy.

Another example of piezotropy is the sncompressible fluid (provided its den-
sity is independent of the temperature), for which pressure drops out in the
equation of piezotropy.

An important special case occurs if the relationship between pressure and
density is the same for all particles within the fluid. In this case, no parameters
appear in the equation of piezotropy, so that this equation becomes

oe=1@) (1.6)

The surfaces of constant density must then at all times coincide with the sur-
faces of constant pressure (barotropy), and the fluid is said to be autobarotropic.
In an autobarotropic fluid the interchange of two particles will not cause any
change of the field of any function of state. An adiabatic fluid in which all
particles have the same entropy, and a homogeneous and incompressible fluid
are both examples of autobarotropic fluids.

The “classical” hydrodynamics may be defined as the hydrodynamics of
autobarotropic fluids, in particular of the homogeneous and incompressible
fluid. In contrast, the ““physical” hydrodynamics is the hydrodynamics of
piezotropic fluids and more general fluid models of two ore more independent
variables of state.

The theoretical basis of physical hydrodynamics was laid by V. BJERKNES, who syste-
matized this science, and introduced the classification of fluid models outlined above, and
by MARGULES, who studied the energy conversions in general fluid models.

2. Thermodynamic properties of dry air. Atmospheric air is a mixture of a
number of perfect gases and water vapor, sometimes also containing suspended
condensation products of water. Whereas the amount of water vaper is highly
variable, the mixing ratio of the perfect gases is constant up to great heights.
Dry air is therefore a well-defined gaseous mixture which with great accuracy
behaves like an ideal gas.

Thus the pressure p, density g and absolute temperature T of dry air fulfill

the gas equation plo=RT, (2.4)

with the condition

where R = 2.8704 X 10° cm? sec™? per degree absolute, is the gas constant of dry

air.
The iniernal energy per unit mass of dry air is

= ¢, T -+ constant, {2.2)

where ¢, = 7.17 x 108 cm? sec™? per degree is the specific heat at constant volume.



Sect. 2. Thermodynamic properties of dry air. 3

The enthalpy per unit mass is

h=c¢+ pa = ¢y T + constant, (2.3)

. '+ where a =g is the specific volume, and
p=c¢,+ R. 2.4
The ratio ? vc 2.4
%= —cf (2.5)

has for dry air the value 1.4.

-For any gas or liquid, or for any gaseous mixture of constant mixing ratio, the
eniropy per unit mass is defined by

Tds=de+ pda=dh—adp. (2.6)

It should be noted that the differentials in this equation are quite general; the
equation holds for individual changes as well as for changes from one particle
to another.

In the case of dry air, one has

Tds=c,dT +pda=c,dT — adp, (2.7)
Eliminating « by means of (2.1} and integrating, one obtains
s = c,log T — Rlog p + constant = ¢, log p — c, log ¢ +4- constant . (2.8)

A convenient measure of the entropy of dry air is the poiential temperature, 8,
which may be defined by

s=cylog b + constant, (2.9)
Comparison between (2.8) and (2.9) shows that
. =1 1
(P} P " P
6'(P) T="0 (2.10)

where p, is a constant which is given the value 1000 mbar =1 bar.
It is often convenient to introduce the ‘“EXNER function”

1-1
m— °"(§J) o (2.11)
One has
adp=04dIl, (2.12)
Tds=1IIdb (2.13)
and
h = II0 - constant. (2.14)

These formulas will be referred to later.

Dry air is a two-parame.er system, the state of which is determined by the
two independent functions of state, e.g. » and p. If in a mass of dry air the
changes of state of the particles are iésenéropic, then the air is piezotropic, and the
equation of piezotropy is obtained from (2.10), where @ is now a constant for
each particle. Isentropic changes of state of dry air are referred to as

1 The potential temperature is the temperature that the air would assume when brought
adiabatically from jts actual pressure to the pressure of 1000 mb.

1*
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Sect. 3.
dry-adiabatic. The corresponding coefficient of piezotropy is
—(Pey _ 1t
ve={5%), = 257 (2.15)
and from (2.7) one obtains ' '
DT, =«
(35).= o (2.16)

3. Thermodynamic properties of moist air. «) Thermodynamics of the waler
component. Water vapor does not follow the laws of an ideal gas nearly as accura-
_tely as does dry air. Nevertheless, it suffices for most purposes to consider also
water vapor as an ideal gas. The errors introduced by this assumption will be
small as far as the meteorological properties of moist air are concerned, since
the amount of water in atmospheric air constitutes only a small fraction of the
total mass.

Denoting the partial pressure and density of water vapor by 3’ and o', its
equation of state may therefore be written

. 2’
Q=057 (3.1)
Here R is the gas constant of dry air, and 6=10.622 is the relative density of
water vapor with respect to dry air. Similaxly, the enthalpy of water vapor may
be written

W = c, T 4 constant, : (3.2)

where ¢, is the specific heat of water vapor at constant pressure.

Liquid water may be treated as incompressible. Denoting its specific heat by
¢”, the enthalpy per unit mass may be written.

A" = ¢" T -} constant. (3.3)
By definition, the latent heat of evaporation is
L=W—¥W, (3-4)

where &' and A" refer to states of vapor and liquid water which are in equilibrium
with each other. However, since both #' and k" are assumed to be functions of
T only, (3.4) may be considered to be true also for vapor and liquid water which
are not in equilibrium, provided only that their temperature is the same. The
enthalpy of water vapor may therefore be written

W =¢’ T + L -+ constant, (3.5)

where the arbitrary constant is identic with the constant in (3-3). The heat of
condensation varies with the temperature, but the variation is slow, and within
the range of temperatures occuring in the atmosphere one may for most purposes
consider L as a constant.

Let P(T) denote the saturation pressure of water vapor with respect to liquid
water with a plane interface. The details of the condensation processes in the
atmosphere are beyond the scope of this articlel; it suffices here to assume that:
1. if the watsr component is present as vapor only, then ¢’ T P(T); :and 2. if the
air contains drops of liquid water, then p’= P(T). Case 1. will be referred to
as unsaturated (or clear) air, and case 2. as saturated for cloudy) air.

1 See the chapter by Masox and LubLam in this volume.
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What is said above about the liquid phase is true for the solid phase also,
and the same formulas apply, provided only ¢’ and L are interpreted as specific
njheat of ice and latent heat of sublimation, respectively.

B) Unsaturated air. Consider a mass of moist air (of pressure p and den-
sity @) which is a mixture of dry air (of partial pressure p, and partial density g,)
and water vapor (of partial pressure ' and partial density p’). Applying the
laws for ideal gaseous mixtures, one has

p=ps+p, e=oteg- (3.6)
The equation of state for the dry air component is
ou= L% (3.7)
and for the water vapor component (3.1). The mixing ratio is defined as
re & e P
P= e =% %" (3-8)

In unsaturated air, this quantity will change only as a result of diffusion and
turbulent mixing. This is usvally a slow process, and in many cases one inay con-
sider 4’ as an indivédual constant so that

Dy'|Dt=0. (3.9)
From (3.1), (3.6), (3.7) and (3.8) one derives

i , 1—@ !

17=(‘ fj‘;r“_‘*“iiul)RT' (3.10)

Hence, if the mixing ratio is constant, moist air satisfies the gas equation, and
its gas constant is slightly larger than the gas constant of dry air, It is customary
in meteorology to write this equation in the form

$lo=RT,, (3.11)
where
T,= (1 +._1_:_°_ Tf?’ﬁ'“) T (3.12)

is called the virtual lemperature. The difference (T, — 7)) may amount to a few
degrees centigrade. If no great accuracy is needed, one may neglect the effect
of humidity upon the equation of state and use the gas equation for dry air (2.1).

From (2.3) and (3.5), one obtains for the enthalpy per unit mass of moist air

o 2t M B
h = oW T4 e L + constant. (3.13)

Since .4’ is a small quahtity, of the order 1% in the lower troposphere and
stilt smaller at greater heights, a suitable approximation for most purposes is

h ¢, T+ p' L + constant. (3.14)
In the same approximation, the internal energy is

e~ c, T+ pu' L+ constant. : (3.i5)
One may therefore write, for any process which satisfies (3(.9),

TDs=Dh—aDp~c,DT —aDp. (3.16)
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’I:hus, nonsaturated air behaves in this approximation in the same way as dry
air. In particular, the isentropic change of state will be very nearly unaffected
by the humidity. .

y) Saturated asr. Let a mass of moist air contain liquid water, so that one - '
mass unit of dry air is connected with x’ mass units of water vapor and x'’ mass
units of liquid water. The vapor is assumed to be in equilibrium with the liquid

phase, so that
‘ . #'= P(T). (3.17)
In this case, (3.8) yields
' g B P(T)
#_‘GP‘;P(T)QU_-Pi‘ (3.18)

ie. the mixing ratio in saturated air is a function of  and 7. The quantity will
change as a result of condensation and evaporation, so that (3.9) is no longer
applicable. From (3.18) one obtains

¢ 4P

D'~ a1

DT-—-%D;S. (3.19)

The total mass of the water component per unit mass of dry air is

p=p +p’. - (3.20)
In the absence of diffusion, turbulent mixing and precipitation, one has
Du/Dt =0 (3.21)

which now replaces (3.9).

"The water drops will slightly increase the mean density of the air, and this
effect can easily be expressed in terms of . Such a formula is of little use,
because p'’ is not known. The effect is very small, however, since g’ is always
a small quantity, and one may therefore as in the case of nonsaturated air in most
applications use the gas equation for dry air (2.1).

The enthalpy per unit mass of the two-phase system is

B S LA ST
h = o T+ T L + constant. (3.22)
As in the case of nonsaturated air, this formula may be replaced by the approxi-
mate formula

hac, T + ' L + constant (3.23)

which may be used whether the air is saturated or not. However, in the saturated

case, u’ is no longer an individual constant. From (3.23) and (3.19) one finds
L 4P LP

TDs=Dh—aDpa(o+ %5 ) PT - (a4 5’-;;)1)?. (3.24)

The difference between the nonsaturated and the saturated case is apparent

from a comparison between (3.16) and (3.24). ) o
Isentropic changes of state of saturated air are referred to as moisi-adsabatic.

For such processes, we have according to (3.24)

L
DTy P
(’1‘55),,’“ oL 4P (3.25)
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When its magnitude is compared with the dry-adiabatic change of state (2.16)

one finds
DT DT

(Ti),f (73_?)d' , -26)

The difference between these quantities is appreciable for relatively high tem-
peratures. However, since P and dP/dT tend rapidly towards zero as T decreases,
it follows that (D T/Dp),, approaches (D T/Dp), for low temperatures; and their
difference is for most purposes negligible at temperatures below — 10° Centi-
grade.

As a conclusion, we may say that atmospheric air may, as far as its thermo-
dynamic properties are concerned, behave in two different ways: 1. Non-saturated
(or clear) air behaves nearly like dry air, regardless of its humidity; and 2. satura-
ted (or cloudy) air has properties which differ from those of non-saturated air,
and which are nearly independent of the content of liquid water or ice. Therefore,
the total content of the water constituent is of little importance as long as we
know whether the air is saturated or not, and we may then consider the thermo-
dynamic state of the air as given by two functions of state, e.g. pressure and den-
sity. However, knowledge of the total water content is essential if we want to
determine when saturation will begin and when it will end.

In many theories in dynamic meteorology, the condensation processes are
disregarded, and the air is considered as non-saturated, or dry.

For a more complete treatment of atmospheric thermodynamics, the reader is referred
to the textbooks [1], (4], [9]. [11], [12] and [I8, 1]. ‘ :

b) Basic equations of physical hydrodynamics.

4. The hydrodynamic equations. a) The EULER{an representation. The EULER-

ian representation, with three space coordinates and time as independent varia-
bles, is most commonly used in dynamic meteorology. The space coordinates may
be CarTEsian, spherical or any other system; however, the vector notation per-
mits us to write equations without specifying the coordinate system.
- The EuLERian description of a hydrodynamic process involves the know-
ledge of the velocity vector v and the thermodynamic state in all points and at
all times. In most cases, the thermodynamic state will be considered as deter-
mined by two thermodynamic functions, e.g. pressure p and density g. If we want
to take into account the effect of humidity, another variable, e.g. the mixing
ratio y must be added. Therefore the dependent variables, which are to be
considered as functions of the space coordinates and time, are », $, ¢ and pos-
sibly u. :

Tlr!lle operator D/D¢ expressing individual differentiation with respect to time
may be expanded in the following way

D a

Dt = “é-t + v grad, (4-1)
where the first term on the right is referred to as the local rate of change, and the
second term as the convective rate of change. This formula is applicable to vector
fields as well as scalar fields; and it is valid in any frame of reference.

B) The equation of continwity. The vector gv represents the flux of mass;
and the net flow of mass out of a resting volume element 4z per unit time is
therefore div(pv)dr. According to the principle of conservation of mass, this
expression must be equal to the rate of decrease of the mass contained within the
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same volume elemgent, which is — %% dt. Hence

0 .
2+ diview)=o0. (4.2)

This equaéion is called the equation of continuity. By means of (4.4) and the
identity

div(ov) = pdivv + v - grad g, (4.3)
the equation of continuity may be written in the alternative form

. __ 1 De 1 Da

If the humidity is taken into account, we will need a corresponding continuity
equation for the water component. However, no simple expression is obtained
for the flux of water, since it will depend upon such processes as precipitation,
evaporation and diffusion.

From the equation of continuity (4.2) and the differentiation rule (4.1), we
may derive the following relation

D 0 .
oot =2V 4 div(gvy), (4.5)

where y denotes any scalar or vector function of the space coordinates and time.

y) The equation of motion referred to an inertial frame. The forces acting upon
an air particle referred to unit mass, are the following: 1. The force of pure gravity
g,= —gradg,, where @, is the potential of the force of gravitational attraction;
2. the pressure force —a gradp; and 3. the force of molecular friction « div &,
where & is the NAVIER-STOKES frictional stress tensor,

Denoting by v, the velocity relative to an inertial frame of reference, and
by D, the individual change relative to an inertial frame of reference, the accelera-
tion is D,v,/Dt. NEwWTON’s second law, written for a mass unit of air, therefore
gives

D,v,/Dt= —grad ¢, — «.grad p + a div #. (4.6)

This is the equation of motion referred to an inertial frame. ‘According to (4.1),
the acceleration may be written

D o0V,

,51:5 = (Eti). 4 v, - gradv,, 4.7)
where (2v,/2), is the local acceleration in the inertial frame, and v, - grad v, the
convective acceleration. An alternative expression for the convective accelera-
tion which is often useful is :

v, grad v, = curlv, X v, 4 grad (} v}) . (4.8

If we let the frame of reference follow the earth in its orbital motion without
participating in its rotation, Eq. (4.6) will hold provided the inertial force due
to the acceleration in the orbital motion is added to the forces. This inertial
force will nearly balance the gravitational attraction from the moon and the sumn,
however, their resultant being the small tidal forces. Therefore, if we neglect the
tidal force, Eq. (4.6) will hold in a non-rotating frame centered at the center of
the earth, provided g, is the potential of gravitational attraction from the earth
only. We shall refer to motions relative to this coordinate system as “‘ absolute’.
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8) The equation of motion referved to a frame rotating with the solid earth. The
earth rotates around its axis with an angular velocity £2=0.729 X 10-4sec1.
Applying the right-handedscrew convention of correspondence between positive
direction of rotation and positive direction of translation along the axis, the angular
velocity may be represented as a vector £2 pointing toward the celestial North
Pole.

Let v denote velocity of the air relative to a frame of reference rotating with
the earth (which will be referred to as ‘‘velative velocity”); let » denote position
vector from the center of the earth, and r, the equator projection of . In the
rotating frame, NEWTON’s second law still holds, provided two fictitious inertial
forces . are added, viz. the centrifugal force and the Corioris force. The centri-
fugal force per unit mass is

Q2 r, =grad § (2 x7)?
and the Corioris force —2 &2 X v.
' The centrifugal force and the force of the earth’s gravitational attraction must
be considered as a unity since only their sum is observable. This sum
. g=9,+2r,= —gradg (4.9)
may be called the forte of apparent 'gra%?'ify, but is usually referred to simply as
the force of gravity. Its potential
¢ =0, —§(Lxn)? (4.10)
is called the geopotential.
‘When the centrifugal force and the Cor1oLIs force are added on the right-hand
side of (4.6), we obtain the equation of motion in the rotating frame,
D0 o gradp — 22 x v —agradp +adivF, (4a1)
where D denotes individual change relative to the rotating frame.
By means of (4.1), the acceleration may be written as

Duv av )
= +wv.grado (4.42)

where the terms on the right are the local and convective accelerations in the
frame rotating with the earth.

Eq. (4.11) is referred to a mass unit. The equation of motion referred to a unit
volume is obtained by multiplication with p. Making use of (4.5), we obtain the
equation of motion in the equivalent form :

2eW | giv(gvo+ps—F) = —egradp—2R x oo (413)

where & denotes the unit tensor. The first term on the left is the rate of increase of
impulse per unit volume; the second term is the divergence of a tensor which may
be interpreted as an impulse flux, and the right-hand side represents the rate of
production of impulse.

¢) Boundary conditions. On a rigid boundary surface, F(x,y,2)=0, the
normal velocity component must vanish; i.e.

v-grad F =0 when F(x,,2)=0. (4.14)
This is the only condition to be fulfilled at a rigid boundary in a nonviscid fluid.
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In a viscous fluid, also the tangential velocity component must vanish, so that
v=0 when F =0. (4.15)

These conditions are easily generalized to the case of a boundary surface of
specified motion. )

There occur in the atmosphere abrupt transition zones (fronts and inversions)
which are most conveniently treated as internal surfaces of discontinuity. On such
surfaces, the equations of motion and continuity lose their meaning, because the
derivatives invelved do not exist; therefore they must be replaced by interface
conditions.

Suppose that F(x, y, 2,'t) =0 is the equation of the interface (which is usually
unknown) ; and suppose further that the interface is a material surface. Letting
subscripts 1 and 2 indicate the dependent variables on either side of the interface,
we have oF

r-gt-—+vl-gradF:O ‘
oF when F = 0. (4.16)
¥ +®,-grad F=0

These equations are called the kinematic interface conditions; they replace the
continuity equation at the interface. When these equations are subtracted, one

obtains
(v, —v,)-grad F =0 when F=0 4.17)

showing that the normal velocity components are the same on both sides. This
equation is not sufficient, however, since F is not known, and (4.17) must be
supplemented by one of the Eqgs. (4.16); this would suffice in the non-viscid case.
In the case of viscous fluids, one has

L =0y
when F =0. (4.18)

N

" + o grad £ =0

The equations of motion must be replaced by the dynamic interface condition.
This is, in the case of a nonviscous fluid,

, pr—ps=0 when F=0. (4.19)
For a viscoﬁs fluid, one must write instead
gradF . [—(p—p) &+ FH — F] =0 when F=0. (4.20)

5. Circulation and vorticity. «) Circulation theorem of V. BJERKNES in ab-
solute motion. Consider an arbitrary closed curve L within the fluid, with a
chosen positive direction along it. Neglecting frictional forces and taking the
line integral of (4.6) in positive direction along L, the force of gravity drops out
and one obtains '

‘ —-'%:-7“ -dr:——é,agradp-dr. (5.1)
L , L

If the closed curve is défined as a material curve, which follows the air in its
motion, then (5.1) may be written ~
ddgtg — (—dgrad'ﬁ)-‘drz ——@adﬁ, (5.2)
N 4 L
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where C,= §v¢ .dr ‘ (5.3)
L

is . called the absolute circulation. Eq. (5.2) is the firsi circulation theorem of
V. BJErRkNEs!l. By means of the theorem of STOKES, (5.2) may also be written

dc,
R =qu-d0', (5.4)

where dd is the vectorial surface element of any surface ¢ which has L as boundary
curve, and where

; S = curl (—agrad p) = -— grada X grad ¢ (5.5)
will be referred to as the “ baroclinicity vector” .

The field of § is non-divergent or “solenoidal”. A convenient representation
of any vector field with this property is obtained by dividing the space into tubes
or “solenoids” of unit vector flux. A set of such solenoids for the field 8 is
formed by the family of isosteric surfaces o = constant (spaced one volume unit
apart) and the family of isobaric surfaces p =constant (spaced one pressure unit
apart). These solenoids will have parallellogrammatic cross-section; they may be
given positive direction in the direction of 8. ’

The right-hand side of (5.5) is seen to represent the number of such isosteric—
sobaric solenoids embraced by the curve L; the number is to be counted algebrai-
cally, so that a solenoid counts + 1 or — 1 according to whether it runs through the
curve L (through the surface ¢) in positive or negative direction.

By means of (2.6) and (2.12), the baroclinicity vector § may also be written
= —grads x grad T = — grad 0 x grad I (5.6)

and alternative solenoids of 8 are therefore obtained from the isentropic surfaces
s = constant and the isothermal surfaces 7 = constant, or from the surfaces
¢ = constant and I7 = constant.

According to V. BJERKNES?, the density field is said to be baroiropic if 8 = 0
in every point within a region. This implies that the isosteric surfaces « = constant
coincide with the isobaric surfaces p = constant, or that grad a = 0 (the case
grad p = 0 is uninteresting). In other words, the barotropic state is characterized
by a.constant density in each isobaric surface. The caefficient of barotropy I is

defined by grad g = I'grad 5. - 6D

Within a barotropic region, the circulation theorem takes the form
dC,jdt = 0. " (5.8)

On the other hand, the density field is said to be baroclinic if 8 5= 0. This
implies that grad « and grad p are both different from zero and that the isosteric
surfaces do not coincide with the isobaric surfaces. Hence, baroclinicity means
that the density distribution in each isobaric surface is non-uniform.

If the fluid remains in the state of rest, then the circulation of every material
closed curve remains zero, and it follows that the state must be barotropic. Such
a state of rest can be disturbed by means of heat and cold sources, provided the
fluid is not piezotropic. The density in an isobaric surface will decrease when the
fluid is heated and increase where the fluid is cooled, so that the initially uniform

! V. ByerkNEs: Vidensk. selsk. Skr., Christiania (Oslo), Math.-naturv. KL 1898, No. 5. —
Sv. Vetensk. Akad. Handl,, Stockh. 31, Nr. 4 (1898).
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