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1

Introduction

Take Carbon for example then
What shapely towers it constructs
A. M. Sullivan, Atomic Architecture

* Carbon, in fact, is a singular element .
Primo Levi, The Periodic Tahie

The ability of carbon to bond with itself and with other atoms in endlessly
varied combinations of chains and rings forms the basis for the sprawling
scientific discipline that is modern organic chemistry. Yet until recently we
knew for certain of just two types of all-carbon crystalline structure, the
naturally occurring allotropes diamond and graphite. Despite the best efforts
of some of the world’s leading synthetic chemists, all attempts to prepare novel
forms of molecular or polymeric carbon came to nothing: the elegant all-
carbon structures proposed by Roald Hoffmann, Orville Chapman and others
remained firmly in the realm of pure speculation. Ultimately, the breakthrough
which revolutionised carbon science came not from synthetic organic chemis-
try but from experiments on clusters formed by the laser-vaporisation of
graphite.

Harry Kroto, of the University of Sussex, and Richard Smalley, of Rice
University, Houston, had different reasons for being interested in the synthesis
of carbon clusters. Kroto had been fascinated since the early 1960s in the
processes occurring on the surfaces of stars, and believed that experiments on
the vaporisation of graphite might provide key insights into these processes.
Smalley, on the other hand, had been working for several years on the
synthesis of clusters using laser-vaporisation, concentrating chiefly on
semiconductors such as silicon and gallium arsenide. But he was also interest-
ed in what might happen when one vaporises carbon. In August 1985, the two
scientists came together at Rice and, with a group of colleagues and students,

1



2 I Introduction

began the now famous series of experiments on the vaporisation of graphite.
They were immediately struck by a surprising result. In the distribution of
gas-phase carbon clusters, detected by mass spectrometry, Cg, was by far the
dominant species. This dominance became even more marked under condi-
tions which maximised the amount of time the clusters were ‘annealed’ in the
helium. There was no immediately obvious explanation for this since there
appeared to be nothing special about open structures containing 60 atoms.
The eurecka moment came when they realised that a ¢losed cluster containing
precisely 60 carbon atoms would have a structure of unique stability and
symmetry, as shown in Fig. 1.1. Although they had no direct evidence to
support this structure, subsequent work has proved them correct. The dis-
covery of C,,, published in Nature in November 1985 (1.1), had an impact
which extended way beyond the confines of academic chemical physics, and
marked the beginning of a new era in carbon science (1.2-1.5).

At first, however, further progress was slow. The main reason was that the
amount of C,, produced in the Kroto-Smalley experiments was minuscule: ‘a
puffin a helium wind'. If C, were to become more than a laboratory curiosity,
some way must be found to produce it in bulk. Eventually, this was achieved
using a technique far simpler than that of Kroto and Smalley. Instead of a
high-powered laser, Wolfgang Kritschmer of the Max Planck Institute at
Heidelberg, Donald Huffman of the University of Arizona and their co-
workers used a simple carbon arc to vaporise graphite, again in an atmosphere
of helium, and collected the soot which settled on the walls of the vessel (1.6).
Dispersing the soot in benzene produced a red solution which could be dried
down to produce beautiful plate-like crystals of ‘fullerite™: 90% C,, and 10%
(., Kratschmer and Huffman’s work, published in Nature in 1990, showed
that macroscopic amounts of solid C,, could be made using methods access-
ible to any laboratory, and it stimulated a deluge of research.

Carbon nanotubes, the primary subject of this book, are perhaps the most
important fruits of this research. Discovered by the electron microscopist
Sumio lijima, of the NEC laboratories in Japan, in 1991, these ‘molecular
carbon fibres’ consist of tiny cylinders of graphite, closed at each end with caps
which contain precisely six pentagonal rings. We can illustrate their structure
by considering the two ‘archetypal’ carbon nanotubes which can be formed by
cutting a C;;, molecule in half and placing a graphene cylinder between the two
halves. Dividing C,, paralle! to one of the three-fold axes results in the zig-zag
nanotube shown in Fig. 1.2(a), while bisecting C, along one of the five-fold
axes produces the armchair nanotube shown in Fig. 1.2(b). The terms “zig-zag’
and ‘armchair’ refer to the arrangement of hexagons around the circumference.
There is a third class of structure in which the hexagons are arranged helically



1.1 The discovery of fullerene-related carbon nanotubes 3

Fig. 1.1. Cg,: buckminsterfullerene.

around the tube axis (see Chapter 3). Experimentally, the tubes are generally
much less perfect than the idealised versions shown in Fig. 1.2, and may be
either multilayered or single-layered.

Carbon nanotubes have captured the imagination of physicists, chemists
and materials scientists alike. Physicists have been attracted to their extraordi-
nary electronic properties, chemists to their potential as ‘nanotest-tubes’ and
materials scientists to their amazing stifiness, strength and resilience. On a
more speculative level, nanotechnologists have discussed possible nanotube-
based gears and bearings. In this book, an attempt has been made to cover all
of the most important areas of nanotube research, as well as discussing related
structures such as carbon nanoparticles, carbon onions and ‘inorganic
fullerenes’. This opening chapter begins with a brief account of the discovery of
carbon nanotubes and then describes some of the basic characteristics of
arc-evaporation-synthesised nanotubes. The pre-1991 evidence for the exist-
ence of nanotubes is discussed, and some of the directions in which nanotube
research is developing are summarised. Finally, the organisation of the book is
outlined.

1.1 The discovery of fullerene-related carbon nanotubes

lijima was fascinated by the Kriatschmer—Huffman Nature paper, and decided
to embark on a detailed TEM study of the soot produced by their technique.
He had good reasons for believing that it might contain some interesting
structures. Ten years earlier he had studied soot formed in a very similar
arc-evaporation apparatus to the one used by Kridtschmer and Huffman and
found a variety of novel carbon architectures including tightly curved, closed
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Fig. 1.2. Drawings of the two nanotubes which can be capped by one half of a C,,
molecule (1.7). (a) Zig-zag (9,0) structure, (b) armchair (5,5) structure (see Chapter 3 for
explanation of indices).

nanoparticles and extended tube-like structures (1.8, 1.9). Might such particles
also be present in the K-H soot? Initial high resolution TEM studies were
disappointing: the soot collected from the walls of the arc-evaporation vessel
appeared almost completely amorphous, with little obvious long-range struc-
ture. Eventually, lijjima gave up sifting through the wall soot from the arc-
evaporation vessel, and turned his attention to the hard, cylindrical deposit
which formed on the graphite cathode after arc-evaporation. Here his efforts
were finally rewarded. Instead of an amorphous mass, the cathodic soot
contained a whole range of novel graphitic structures, the most striking of
which were long hollow fibres, finer and more perfect than any previously seen.
Iijima’s beautiful images of carbon nanotubes, shown first at a meeting at
Richmond, Virginia in October 1991, and published in Nature a month later
(1.10), prompted fullerene scientists the world over to look again at the used
graphite cathodes, previously discarded as junk.

1.2 Characteristics of multiwalled nanotubes

A typical sample of the nanotube-containing cathodic soot is shown at moder-
ate magnification in Fig. 1.3(a). As can be seen, the nanotubes are accompanied
by other material, including nanoparticles (hollow, fullerene-related struc-
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Fig. 1.3. (a) TEM image of nanotube-containing soot. Scale bar 100nm. {b) Higher
magnification image of individual tubes. Scale bar 10 nm.

tures) and some disordered carbon. The nanotubes range in length from a few
tens of nanometres to several micrometres, and in outer diameter from about
2.5nm to 30nm. At high resolution the individual layers making up the
concentric tubes can be imaged directly, as in Fig. 1.3(b). It is quite frequently
observed that the central cavity of a nanotube is traversed by graphitic layers,
effectively capping one or more of the inner tubes and reducing the total
number of layers in the tube. An example is shown in Fig. 1.4, where a single
layer forms a cap across the central tube, reducing the number of concentric
layers from six to five.
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Fig. 1.4. High resolution image of multiwalled nanotube with ‘internal cap”. Scale bar
Som.

Fig. 1.5. Image of typical multiwalled nanotube cap. Scale bar 5nm.

As mentioned above, virtually all of the tubes are closed at both ends with
caps which contain pentagonal carbon rings. In practice, the caps are rarely
hemispherical in shape, but can have a variety of morphologies; a typical
example is shown in Fig. 1.5. More complex cap structures are often observed,
owing to the presence of heptagonal as well as pentagonal carbon rings (1.11),
lijima has often illustrated the role played by pentagonal and heptagonal rings
in nanotube caps by referring to the art of Japanese basket-work, of the kind
shown in Fig. 1.6, where non-hexagonal rings play a similar topological role.
Structures analogous to those of carbon nanotubes also occur among viruses
(see Chapter 3), and, perhaps inevitably, among the architectural designs of
Buckminster Fuller (Fig. 1.7).



