Handbook of
Optimization in
Operations Research

Methods, Algorithms and Techniques
- ". | J‘?\v .' vvr ";:‘

-,




Handbook of

OPTIMIZATION IN
OPERATIONS RESEARCH

Methods, Algorithms and Techniques

Editor

Dr Peter Langlow
University of Dartmouth

lﬁ/‘)\ I‘t

TR, - +-,

i

AuRIS

AURIS REFERENCE LTD.
London, UK



Handbook of Optimization in Operations Research: Methods, Algorithms and
Techniques

© 2013

Revised Edition 2014

Published by
Auris Reference Ltd., UK

www.aurisreference.com

ISBN: 978-1-78154-293-4

Editor: Dr Peter Langlow

Printed in UK
10987654321

British Library Cataloguing in Publication Data
A CIP record for this book is available from the British Library

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise without prior written permission of the publisher.

Reasonable efforts have been made to publish reliable data and information, but the
authors, editors, and the publisher cannot assume responsibility for the legality of
all materials or the consequences of their use. The authors, editors, and the publisher
have attempted to trace the copyright holders of all materials in this publication and
express regret to copyright holders if permission to publish has not been obtained. If
any copyright material has not been acknowledged, let us know so we may rectify in
any future reprint.

For information about Auris Reference Ltd and its publications, visit our website
at www.aurisreference.com



Handbook of

OPTIMIZATION IN

OPERATIONS RESEARCH
Methods, Algorithms and Techniques



TMILGE R : FEESRGELL:  www. ertongbook. com



Preface

Operations research or operational research is a discipline that
deals with the application of advanced analytical methods to help
make better decisions. As a formal discipline, operational research
originated in the efforts of military planners during World War II.
In the decades after the war, the techniques began to be applied more
widely to problems in business, industry and society. Since that time,
operational research has expanded into a field widely used in industries
ranging from petrochemicals to airlines, finance, logistics, and
government, moving to a focus on the development of mathematical
models that can be used to analyse and optimize complex systems,
and has become an area of active academic and industrial research.

Operations research encompasses a wide range of problem-solving
techniques and methods applied in the pursuit of improved decision-
making and efficiency, such as simulation, mathematical optimization,
queuing theory and other stochastic-process models, Markov decision
processes, econometric methods, data envelopment analysis, neural
networks, expert systems, decision analysis, and the analytic hierarchy
process. Nearly all of these techniques involve the construction of
mathematical models that attempt to describe the system. Employing
techniques from other mathematical sciences, such as mathematical
modelling, statistical analysis, and mathematical optimization,
operations research arrives at optimal or near-optimal solutions to
complex decision-making problems. Because of its emphasis on human-
technology interaction and because of its focus on practical applications,
operations research has overlap with other disciplines, notably
industrial engineering and operations management, and draws on
psychology and organization science. Operations research is often
concerned with determining the maximum or minimum of some real-
world objective.

Optimization is a branch of operations research which uses
mathematical techniques such as linear and nonlinear programming
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to derive values for system variables that will optimize performance.
The mathematical aspects of operations research and systems analysis
concerned with optimization of objectives form the subject of this
book. The book discusses on linear programming and provides greater
emphasis on duality theory, sensitivity analysis, parametric
programming, multi-objective and goal programming and formulation
and solution of practical problems. Aspects of Nonlinear programming
including integer programming, kuhn-tucker theory, separable and
quadratic programming, dynamic programming, geometric
programming and direct search and gradient methods, theory of
games and Karmarkar’s projective algorithm is dealt with. The
optimization techniques are needed in arriving at an effective decision
in areas of management, finance, production, marketing, personnel,
transportation, public health, military, planning and agriculture, etc.
The persons connected with management and business executives, are
therefore, supposed to have a good knowledge of optimization theory.

The book keeps in view the needs of the student taking a regular
course in operations research or mathematical programming, and also
of research scholars in other disciplines who have a limited objective
of learning the practical aspects of various optimization methods to
solve their special problems. Summaries of computational algorithms
for various methods which would help him to write computer
programmes to solve larger problems would be helpful to various
sections. This book exposes students to the broad scope of the topic,
reinforces the basic principles, sparks students’ enthusiasm about the
field, provides tools of immediate relevance and develops the skills
necessary to use those tools.

—Editor
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Chapter 1

Mathematical Optimization

In mathematics, computer science, or management science,
mathematical optimization (alternatively, optimization or mathematical
programming) is the selection of a best element (with regard to some
criteria) from some set of available alternatives. In the simplest case,
an optimization problem consists of maximizing or minimizing a real
function by systematically choosing input values from within an allowed
set and computing the value of the function. The generalization of
optimization theory and techniques to other formulations comprises a
large area of applied mathematics. More generally, optimization includes
finding “best available” values of some objective function given a defined
domain, including a variety of different types of objective functions and
different types of domains.

Optimization Problem

In mathematics and computer science, an optimization problem
is the problem of finding the best solution from all feasible solutions.
Optimization problems can be divided into two categories depending
on whether the variables are continuous or discrete. An optimization
problem with discrete variables is known as a combinatorial
optimization problem. In a combinatorial optimization problem, we
are looking for an object such as an integer, permutation or graph
from a finite (or possibly countable infinite) set.

Continvous Optimization Problem
The standard form of a (continuous) optimization problem is
minimize f(x)
subject to g,(x)<0, i=1,....,m
h(x)=0, 1=1,..,p
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where

*  f(x):R" - R1s the objective function to be minimized over the
variable x,

*  g;(x)<0are called inequality constraints, and

*  h.(x)=0are called equality constraints.

By convention, the standard form defines a minimization problem.
A maximization problem can be treated by negating the objective
function.

Combinatorial Optimization Problem

Formally, a combinatorial optimization problem A is a quadruple
(I,f,m,g), where

« I is a set of instances;
* given an instance x e J, f(x)1s the set of feasible solutions;

* given an instance x and a feasible solution y of m(x,y), denotes
the measure of y, which is usually a positive real.

+ g is the goal function, and is either pjn or max.

The goal is then to find for some instance an optimal solution,
that is, a feasible solution y with

m(x,y) = g{m(x,y") | ¥' € f(x)}.

For each combinatorial optimization problem, there is a
corresponding decision problem that asks whether there is a feasible
solution for some particular measure m, For example, if there is a
graph G which contains vertices u and v, an optimization problem
might be “find a path from to that uses the fewest edges”. This
problem might have an answer of, say, 4. A corresponding decision
problem would be “is there a path from to that uses 10 or fewer edges?”
This problem can be answered with a simple ‘yes’ or ‘no’.

In the field of approximation algorithms, algorithms are designed
to find near-optimal solutions to hard problems. The usual decision
version is then an inadequate definition of the problem since it only
specifies acceptable solutions. Even though we could introduce suitable
decision problems, the problem is more naturally characterized as an
optimization problem.

NP Optimization Problem
An NP-optimization problem (NPO) is a combinatorial optimization
problem with the following additional conditions. Note that the below
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referred polynomials are functions of the size of the respective functions’
inputs, not the size of some implicit set of input instances.

* the size of every feasible solution ye f(x)is polynomially
bounded in the size of the given instance x,

* the languages {x|x e I}and {(x,y)|y € f(x)} can be recognised
in polynomial time, and
* m is polynomial-time computable.

This implies that the corresponding decision problem is in NP.
In computer science, interesting optimization problems usually have
the above properties and are therefore NPO problems. A problem is
additionally called a P-optimization (PO) problem, if there exists an
algorithm which finds optimal solutions in polynomial time. Often,
when dealing with the class NPO, one is interested in optimization
problems for which the decision versions are NP-hard. Note that
hardness relations are always with respect to some reduction. Due
to the connection between approximation algorithms and computational
optimization problems, reductions which preserve approximation in
some respect are for this subject preferred than the usual Turing and
Karp reductions. An example of such a reduction would be the L-
reduction. For this reason, optimization problems with NP-complete
decision versions are not necessarily called NPO-complete.

NPO is divided into the following subclasses according to their
approximability:

* NPO(I): Equals FPTAS. Contains the Knapsack problem.

*  NP((1]): Equals PTAS. Contains the Makespan scheduling problem.

* NPO(III): :The class of NPO problems that have polynomial-
time algorithms which computes solutions with a cost at most
¢ times the optimal cost (for minimization problems) or a cost
at least 1/ of the optimal cost (for maximization problems).
In Hromkovié’s book, excluded from this class are all NPO(I)-
problems save if P=NP. Without the exclusion, equals APX.
Contains MAX-SAT and metric TSP.

* NPO(IV): :The class of NPO problems with polynomial-time
algorithms approximating the optimal solution by a ratio that
is polynomial in a logarithm of the size of the input. In
Hromkovic’s book, all NPO(III)-problems are excluded from
this class unless P=NP. Contains the set cover problem.

* NPO(V): :The class of NPO problems with polynomial-time
algorithms approximating the optimal solution by a ratio
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bounded by some function on n. In Hromkovic’s book, all
NPO(IV)-problems are excluded from this class unless P=NP.
Contains the TSP and Max Clique problems.

Another class of interest is NPOPB, NPO with polynomially
bounded cost functions. Problems with this condition have many
desirable properties.

Notation

Optimization problems are often expressed with special notation.
Here are some examples.

Minimum and Maximum Value of a Function

Consider the following notation:

min__, (x® +1)

This denotes the minimum value of the objective function ,2 .1,
when choosing x from the set of real numbers g . The minimum value
in this case is 1, occurring at x=0.

Similarly, the notation

max,_p 2x

asks for the maximum value of the objective function 2x, where x may
be any real number. In this case, there is no such maximum as the
objective function is unbounded, so the answer is “infinity” or
“undefined”.

Optimal Input Arguments

Consider the following notation:
argmin x* +1,
xe(—w0,~1]

or equivalently

argmin x? +1, subject to: x € (-0,—1].
X

This represents the value (or values) of the argument x in the
interval (—0,~1] that minimizes (or minimize) the objective function
x>+ 1 (the actual minimum value of that function is not what the
problem asks for). In this case, the answer is x = -1, since x = 0 is
infeasible, i.e. does not belong to the feasible set.

Similarly,

argmax xcos(y),
xe[-5,5], yeR
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or equivalently

argmax xcos(y), subject to: x € [-5,5], y e R,
Xy
represents the (x,y) pair (or pairs) that maximizes (or maximize) the
value of the objective function xcos(y), with the added constraint that
x lie in the interval [-5,5] (again, the actual maximum value of the
expression does not matter). In this case, the solutions are the pairs
of the form (5, 2kn) and (-5,(2k+1)x), where k ranges over all integers.

Arg min and arg max are sometimes also written argmin and
argmax, and stand for argument of the minimum and argument of
the maximum.

History

Fermat and Lagrange found calculus-based formulas for identifying
optima, while Newton and Gauss proposed iterative methods for
moving towards an optimum. Historically, the first term for
optimization was “linear programming”, which was due to George B.
Dantzig, although much of the theory had been introduced by Leonid
Kantorovich in 1939. Dantzig published the Simplex algorithm in
1947, and John von Neumann developed the theory of duality in the
same year.

The term, programming, in this context does not refer to computer
programming. Rather, the term comes from the use of program by
the United States military to refer to proposed training and logistics
schedules, which were the problems Dantzig studied at that time.

Multi-Objective Optimization

Multi-objective optimization (also known as multi-objective
programming, vector optimization, multicriteria optimization,
multiattribute optimization or Pareto optimization) is an area of
multiple criteria decision making, that is concerned with mathematical
optimization problems involving more than one objective function to
be optimized simultaneously. Multi-objective optimization has been
applied in many fields of science, including engineering, economics
and logistics, where optimal decisions need to be taken in the presence
of trade-offs between two or more conflicting objectives. Minimizing
weight while maximizing the strength of a particular component, and
maximizing performance whilst minimizing fuel consumption and
emission of pollutants of a vehicle are examples of multi-objective
optimization problems involving two and three objectives, respectively.
In practical problems, there can be more than three objectives.
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For a nontrivial multi-objective optimization problem, there does
not exist a single solution that simultaneously optimizes each objective.
In that case, the objective functions are said to be conflicting, and
there exists a (possibly infinite number of) Pareto optimal solutions.
A solution is called nondominated, Pareto optimal, Pareto efficient or
noninferior, if none of the objective functions can be improved in value
without degrading some of the other objective values. Without
additional subjective preference information, all Pareto optimal
solutions are considered equally good (as vectors cannot be ordered
completely). Researchers study multi-objective optimization problems
from different viewpoints and, thus, there exist different solution
philosophies and goals when setting and solving them. The goal may
be to find a representative set of Pareto optimal solutions, and/or
quantify the trade-offs in satisfying the different objectives, and/or
finding a single solution that satisfies the subjective preferences of
a human decision maker (DM).

Introduction

A multi-objective optimization problem is an optimization problem
that involves multiple objective functions. In mathematical terms, a
multi-objective optimization problem can be formulated as

min  (£), 4(0),.... fo(x))
st. xelX,

where the integer k> 2 is the number of objectives and the set X is
the feasible set of decision vectors. The feasible set is typically defined
by some constraint functions. In addition, the vector-valued objective
function is often defined as

f: X >R, f(x) = (f(x),.... () -
If some objective function is to be maximized, it is equivalent to

minimize its negative. The image of X is denoted by y . g*

*

An element ,* c x is called a feasible solution or a feasible

decision. A vector 2" .= f(x") e R* for a feasible solution x" is called

an objective vector or an outcome. In multi-objective optimization,
there does not typically exist a feasible solution that minimizes all
objective functions simultaneously. Therefore, attention is paid to
Pareto optimal solutions; that is, solutions that cannot be improved
in any of the objectives without degrading at least one of the other
objectives. In mathematical terms, a feasible solution ! ¢ X is said

to (Pareto) dominate another solution 42 ¢ x, if

*
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L. f(x') < f(x*)for all indices i€ {1,2,..,k} and
2. fj(xl)<)3(x2)for at least one index je{1,2,...,k}.

A solution 4! ¢ x (and the corresponding outcome f(x"))is called
Pareto optimal, if there does not exist another solution that dominates
it. The set of Pareto optimal outcomes is often called the Pareto front
or Pareto boundary.

The Pareto front of a multi-objective optimization problem is bounded
by a so-called nadir objective vector ;74 and anideal objective vector yideal |
if these are finite. The nadir objective vector is defined as

2 = sup fi(x)foralli=1,..,k

xeX is Pareto optimal

and the ideal objective vector as
zi%al — inf f(x) for alli =1,...,k.

In other words, the components of a nadir and an ideal objective
vector define upper and lower bounds for the objective function values
of Pareto optimal solutions, respectively. In practice, the nadir objective
vector can only be approximated as, typically, the whole Pareto optimal
set is unknown.

Examples of Multi-Objective Optimization Applications

Economics

In economics, many problems involve multiple objectives along
with constraints on what combinations of those objectives are
attainable. For example, consumer’s demand for various goods is
determined by the process of maximization of the utilities derived
from those goods, subject to a constraint based on how much income
is available to spend on those goods and on the prices of those goods.
This constraint allows more of one good to be purchased only at the
sacrifice of consuming less of another good; therefore, the various
objectives (more consumption of each good is preferred) are in conflict
with each other. A common method for analyzing such a problem is
to use a graph of indifference curves, representing preferences, and
a budget constraint, representing the trade-offs that the consumer is
faced with.

Another example involves the production possibilities frontier,
which specifies what combinations of various types of goods can be
produced by a society with certain amounts of various resources. The
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frontier specifies the trade-offs that the society is faced with — if the
society is fully utilising its resources, more of one good can be produced
only at the expense of producing less of another good. A society must
then use some process to choose among the possibilities on the frontier.

Macroeconomic policy-making is a context requiring multi-objective
optimization. Typically a central bank must choose a stance for
monetary policy that balances competing objectives — low inflation,
low unemployment, low balance of trade deficit, etc. To do this, the
central bank uses a model of the economy that quantitatively describes
the various causal linkages in the economy; it simulates the model
repeatedly under various possible stances of monetary policy, in order
to obtain a menu of possible predicted outcomes for the various variables
of interest. Then in principle it can use an aggregate objective function
to rate the alternative sets of predicted outcomes, although in practice
central banks use a non-quantitative, judgement-based, process for
ranking the alternatives and making the policy choice.

Finance

In finance, a common problem is to choose a portfolio when there
are two conflicting objectives — the desire to have the expected value
of portfolio returns be as high as possible, and the desire to have risk,
measured by the standard deviation of portfolio returns, be as low as
possible. This problem is often represented by a graph in which the
efficient frontier shows the best combinations of risk and expected
return that are available, and in which indifference curves show the
investor’s preferences for various risk-expected return combinations.
The problem of optimizing a function of the expected value (first
moment) and the standard deviation (square root of the second moment)
of portfolio return is called a two-moment decision model.

Optimal Confrol

In engineering and economics, many problems involve multiple
objectives which are not describable as the-more-the-better or the-
less-the-better; instead, there is an ideal target value for each objective,
and the desire is to get as close as possible to the desired value of
each objective. For example, one might want to adjust a rocket’s fuel
usage and orientation so that it arrives both at a specified place and
at a specified time; or one might want to conduct open market operations
so that both the inflation rate and the unemployment rate are as close
as possible to their desired values.

Often such problems are subject to linear equality constraints
that prevent all objectives from being simultaneously perfectly met,



