=2 Perl &Iz (o)

Advanced
Perl
Pro grammmg

O’REILLY"
31 &R “% AR AL Simon Cozens &

B IR

=% Perl 432 (e iR)
Advanced Perl Programming

Simon Cozens

O'REILLY®

Beijing » Cambridge + Farnham < Koln « Paris « Sebastopol « Taipei » Tokyo

O'Reilly Media, Inc. £ & & X ¥ & #RAL b BR

FEAXFEHRME

BHBERKE (CIP) iR

midk Perl 4if2: HE2MK / () FHEHT (Cozens,S.) %
—REA . — B RERE R, 2006.4

PR 3L : Advanced Perl Programming, Second Edition

ISBN 7-5641-0315-9

I.&.. I.8.. I1.PERLiES -BFiEH-¥%
V. 312

R A E 151 CIP SR (2006) 45021828 2

[LHEAURZEER A F%i
5. 10-2006-39 &

©2005 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2006. Authorized reprint of the original English edition, 2005 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
% LR #h & O'Reilly Media, Inc. i #% 2005,

EXH MG A b K F b A R 2006, 1% FP R &Y sk BR Ao 4K 1E 43 2 h RA A b B A PT R —— O'Reilly
Media, Inc. &5 7T,

WARPRAT . AR5 @4 T, K5 94EAT 3 o fo AR RFUAEATH X F 4,

B A BRPal G B R (HER)

3 5/ ISBN 7-5641-0315-9

TAEHmEE/ Skt

$Hi%it/ Edie Freedman, D& 3

HIR & 17/ BRI (press.seu.edu.cn)

oo fb/ BIRPOAEEE 2 S (BREX4ED 210096)

B R/ bW ENRIERRA A

F A T87 FEK x 980 Kk 16 A 18.75 Flik
hR k! 200644 A% 1R 2006 £ 4 A5 1 ke ERRI
El %/ 0001-2000 i}

E ffr/ 40.00 ¢ ()

O'Reilly Media, Inc. 4148

O'Reilly Media, Inc. £ f#tf E7£ UNIX, X, Internet FIE I ALK E BYIRES
GRHALATHARA R, M2 R,

M E:#% 44589 The Whole Internet User's Guide & Catalog) (#£H %2 st B 518 IEH
THHEREENSOAS Z—) B GNN (FFH Internet [T MBI EE), FEH
WebSite (3 —A~EEPCHIWeb iR % 2%), O'Reilly Media, Inc.—H AbF Internet
A 3: 08N

Y2 BERRIFEERY, OReilly Media, Inc. REBREMHREINEBHRE —&—
EEEH—MER. SXZHEITBEVEBHRHELL, O'Reilly Media, Inc. AHEHE
BTN L L B &R, X (£ O'Reilly Media, Inc. LK T — AN 4EH A T8l T oAt il g
WIH AR 75 . O'Reilly Media, Inc. BT AR 4B A ALIRTEBRBIF R, B RTRK
IR L %K. O'Reilly Media, Inc. B4 ¥ £ B EHIEE B —— 14 S RAE K G
BHHEAER. EREE, MAALEREZENE, OReilly Media, Inc. (REEMAS
#EHEF, Hob O'Reilly Media, Inc. BFEMEHREHUFIKAE, ALl O'Reilly
Media, Inc. 5 Hth L HEFEH LEH,

tH higi5e AR

BEE U EANUR AR B RBAF TR A, AREAS A - EARE R ROFNEY, HE
PLEE AR & RG AR Tl A 7= @k i& A B & A G Rk T ERMIP IR, Aif,
B PG A R S BT BE 2 Bt Ak B B SRy, o4 TR BYE B A LSS — Bt (Al
TREE SN BOBTRIECAR . AR K2 R AL AN B O'Reilly Meida, Inc.ik B IX, 6k
S5 A AR RANTGEANE AL EHOREH R AL, AR SE F ik
FICRETEA EMR A 1EE . Kb, ZERBE LR EESIES “RP” HR, FH KR
HIRR” RELGIEE.

WANF B AR, B 5 SR SR e E A RAT LB EARA A . BIEFYLBEIRRR A 5
ME BRI AERF V LAER BB, RN EV B RN R RE R, hROME
B R E SRR AL,

B H R A — HERCEN AR B A5, A4

o (BEAHM Linux W FE=RRY GEERR)

o (Perl BfEXLER) (RZENAR)

o (K Perl iR HE M) (FEENAR)

o (PerlIBEF AT HMRY GEEIR)

e (HEAKHHTML 5CSS, XHTML) (S2ENAR)
e (UML 2.0 B RFMY (HEIR)

o (802.11 LM BURIER B ZhRY (RER)
o (WHAZHZEZA) (HER)

e (NETHMFXR FIR) (FEIAR)

e (ASP.NET %&f2 E =) (GEEIRR)

Preface

It was all Nathan Torkington’s fault. Our Antipodean programmer, editor, and
O’Reilly conference supremo friend asked me to update the original Advanced Perl
Programming way back in 2002.

The Perl world had changed drastically in the five years since the publication of the
first edition, and it continues to change. Particularly, we’ve seen a shift away from
techniques and toward resources—from doing things yourself with Perl to using
what other people have done with Perl. In essence, advanced Perl programming has
become more a matter of knowing where to find what you need on the CPAN;’
rather than a matter of knowing what to do.

Perl changed in other ways, too: the announcement of Perl 6 in 2000 ironically
caused a renewed interest in Perl 5, with people stretching Perl in new and interest-
ing directions to implement some of the ideas and blue-skies thinking about Perl 6.
Contrary to what we all thought back then, far from killing off Perl 5, Perl 6’s devel-
opment has made it stronger and ensured it will be around longer.

So it was in this context that it made sense to update Advanced Perl Programming to
reflect the changes in Perl and in the CPAN. We also wanted the new edition to be
more in the spirit of Perl—to focus on how to achieve practical tasks with a mini-
mum of fuss. This is why we put together chapters on parsing techniques, on deal-
ing with natural language documents, on testing your code, and so on.

But this book is just a beginning; however tempting it was to try to get down every-
thing I ever wanted to say about Perl, it just wasn’t possible. First, because Perl usage
covers such a wide spread—on the CPAN, there are ready-made modules for folding
DNA sequences, paying bills online, checking the weather, and playing poker. And
more are being added every day, faster than any author can keep up. Second, as
we’ve mentioned, because Perl is changing. 1 don’t know what the next big advance

* The Comprehensive Perl Archive Network (http://www.cpan.org) is the primary resource for user-contributed
Perl code.

xi

in Perl will be; I can only take you through some of the more important techniques
and resources available at the moment.

Hopefully, though, at the end of this book you’ll have a good idea of how to use
what’s available, how you can save yourself time and effort by using Perl and the Perl
resources available to get your job done, and how you can be ready to use and inte-
grate whatever developments come down the line.

In the words of Larry Wall, may you do good magic with Perl!

Audience

If you've read Learning Perl and Programming Perl and wonder where to go from
there, this book is for you. It’ll help you climb to the next level of Perl wisdom. If
you’ve been programming in Perl for years, you’'ll still find numerous practical tools
and techniques to help you solve your everyday problems.

Contents

Chapter 1, Advanced Techniques, introduces a few common tricks advanced Perl pro-
grammers use with examples from popular Perl modules.

Chapter 2, Parsing Techniques, covers parsing irregular or unstructured data with
Parse::RecDescent and Parse: :Yapp, plus parsing HTML and XML.

Chapter 3, Templating Tools, details some of the most common tools for templating and
when to use them, including formats, Text::Template, HTML: :Template, HTML: :Mason,
and the Template Toolkit.

Chapter 4, Objects, Databases, and Applications, explains various ways to efficiently
store and retrieve complex data using objects—a concept commonly called object-
relational mapping.

Chapter 5, Natural Language Tools, shows some of the ways Perl can manipulate
natural language data: inflections, conversions, parsing, extraction, and Bayesian
analysis.

Chapter 6, Perl and Unicode, reviews some of the problems and solutions to make
the most of Perl’s Unicode support.

Chap ter 7, POE, looks at the popular Perl event-based environment for task sched-
uling, multitasking, and non-blocking I/0 code.

Chapter 8, Testing, covers the essentials of testing your code.

Chapter 9, Inline Extensions, talks about how to extend Perl by writing code in other
languages, using the Inline: :* modules.

xii | Preface

Chapter 10, Fun with Perl, closes on a lighter note with a few recreational (and edu-
cational) uses of Perl.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators

(such as Alt and Ctrl).
Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.
Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
classes, namespaces, methods, modules, parameters, values, XML tags, HTML
tags, the contents of files, or the output from commands.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values.

o

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

Preface | xiii

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Advanced Perl Programming, Second Edi-
tion by Simon Cozens. Copyright 2005 O’Reilly Media, Inc. 0-596-00456-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:
O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http:/fwww.oreilly.com/catalog/advperl2/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http:/fwww.oreilly.com

Safari® Enabled

- When you see a Safari Enabled icon on the cover of your favorite tech-
Big.'g!"i‘ nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

xiv | Preface

Acknowledgments

I've already blamed Nat Torkington for commissioning this book; I should thank him
as well. As much as writing a book can be fun, this one has been. It has certainly been
helped by my editors, beginning with Nat and Tatiana Apandi, and ending with the
hugely talented Allison Randal, who has almost single-handedly corrected code, col-
lated comments, and converted my rambling thoughts into something publishable.
The production team at O’Reilly deserves a special mention, if only because of the tor-
ture I put them through in having a chapter on Unicode.

Allison also rounded up a great crew of highly knowledgeable reviewers: my thanks to
Tony Bowden, Philippe Bruhat, Sean Burke, Piers Cawley, Nicholas Clark, James Dun-
can, Rafael Garcia-Suarez, Thomas Klausner, Tom McTighe, Curtis Poe, chromatic,
and Andy Wardley.

And finally, there are a few people I'd like to thank personally: thanks to Heather
Lang, Graeme Everist, and Juliet Humphrey for putting up with me last year, and to
Jill Ford and the rest of her group at All Nations Christian College who have to put
up with me now. Tony Bowden taught me more about good Perl programming than
either of us would probably admit, and Simon Ponsonby taught me more about
everything else than he realises. Thanks to Al and Jamie for being there, and to Mal-
colm and Caroline Macdonald and Noriko and Akio Kawamura for launching me on
the current exciting stage of my life.

Preface | xv

Table of Contents

Preface Xi
1. AdvancedTechniques, 1
Introspection 2
Messing with the Class Model 20
Unexpected Code 25
Conclusion 42

2. ParsingTechniquesl 43
Parse::RecDescent Grammars 44
Parse::Yapp 68
Other Parsing Techniques 73
Conclusion _ 78

3. TemplatingTools 79
Formats and Text::Autoformat 80
Text:: Template 84
HTML::Template 90
HTML::Mason 96
Template Toolkit 107
AxKit 114
Conclusion 116

4, Objects, Databases, and Applications 118
Beyond Flat Files 118
Object Serialization 119
Object Databases 129

vii

Database Abstraction
Practical Uses in Web Applications
Conclusion

Natural LanguageTools

Perl and Natural Languages
Handling English Text
Modules for Parsing English
Categorization and Extraction
Conclusion

Perland Unicode

Terminology

What Is Unicode?

Unicode Transformation Formats
Handling UTF-8 Data

Encode

Unicode for XS Authors
Conclusion

Programming in an Event-Driven Environment

Top-Level Pieces: Components
Conclusion

Testingo i

Test::Simple

Test::More

Test::Harness

Test::Builder

Test::Builder:: Tester

Keeping Tests and Code Together
Unit Tests

Conclusion

InlineExtensions

Simple Inline::C

More Complex Tasks with Inline::C
Inline:: Everything Else

Conclusion

134
142
148

149
149
150
154
159
171

172
172
174
176
179
184
190
193

195
195
207
213

215
217
220
222
224
225
226
232

233
237
250
255

viii

Table of Contents

10.

FunwithPerl

Obfuscation

Just Another Perl Hacker
Perl Golf

Perl Poetry

Acme::*

Conclusion

256
261
263
264
266
270

Table of Contents | ix

CHAPTER 1
Advanced Techniques

Once you have read the Camel Book (Programming Perl), or any other good Perl
tutorial, you know almost all of the language. There are no secret keywords, no other
magic sigils that turn on Perl’s advanced mode and reveal hidden features. In one
sense, this book is not going to tell you anything new about the Perl language.

What can I tell you, then? I used to be a student of music. Music is very simple.
There are 12 possible notes in the scale of Western music, although some of the most
wonderful melodies in the world only use, at most, eight of them. There are around
four different durations of a note used in common melodies. There isn’t a massive
musical vocabulary to choose from. And music has been around a good deal longer
than Perl. I used to wonder whether or not all the possible decent melodies would
soon be figured out. Sometimes I listen to the Top 10 and think I was probably right
back then.

But of course it’s a bit more complicated than that. New music is still being pro-
duced. Knowing all the notes does not tell you the best way to put them together.
I've said that there are no secret switches to turn on advanced features in Perl, and
this means that everyone starts on a level playing field, in just the same way that
Johann Sebastian Bach and a little kid playing with a xylophone have precisely the
same raw materials to work with. The key to producing advanced Perl—or advanced
music—depends on two things: knowledge of techniques and experience of what
works and what doesn’t.

The aim of this book is to give you some of each of these things. Of course, no book
can impart experience. Experience is something that must be, well, experienced.
However, a book like this can show you some existing solutions from experienced
Perl programmers and how to use them to solve the problems you may be facing.

On the other hand, a book can certainly teach techniques, and in this chapter we’re
going to look at the three major classes of advanced programming techniques in Perl.
First, we’ll look at introspection: programs looking at programs, figuring out how
they work, and changing them. For Perl this involves manipulating the symbol

table—especially at runtime, playing with the behavior of built-in functions and using
AUTOLOAD to introduce new subroutines and control behavior of subroutine dispatch
dynamically. We’ll also briefly look at bytecode introspection, which is the ability to
inspect some of the properties of the Perl bytecode tree to determine properties of the
program.

The second idea we’ll look at is the class model. Writing object-oriented programs
and modules is sometimes regarded as advanced Perl, but I would categorize it as
intermediate. As this is an advanced book, we’re going to learn how to subvert Perl’s
object-oriented model to suit our goals.

Finally, there’s the technique of what I call unexpected code—code that runs in places
you might not expect it to. This means running code in place of operators in the case
of overloading, some advanced uses of tying, and controlling when code runs using
named blocks and eval.

These three areas, together with the special case of Perl XS programming—which
we’ll look at in Chapter 9 on Inline—delineate the fundamental techniques from
which all advanced uses of Perl are made up.

Introspection

First, though, introspection. These introspection techniques appear time and time
again in advanced modules throughout the book. As such, they can be regarded as
the most fundamental of the advanced techniques—everything else will build on
these ideas.

Preparatory Work: Fun with Globs

Globs are one of the most misunderstood parts of the Perl language, but at the same
time, one of the most fundamental. This is a shame, because a glob is a relatively
simple concept.

When you access any global variable in Perl—that is, any variable that has not been
declared with my—the perl interpreter looks up the variable name in the symbol table.
For now, we’ll consider the symbol table to be a mapping between a variable’s name
and some storage for its value, as in Figure 1-1.

Note that we say that the symbol table maps to storage for the value. Introductory
programming texts should tell you that a variable is essentially a box in which you
can get and set a value. Once we’ve looked up $a, we know where the box is, and we
can get and set the values directly. In Perl terms, the symbol table maps to a refer-
ence to $a.

2 | Chapter1: Advanced Techniques

Figure 1-1. Consulting the symbol table, take 1

You may have noticed that a symbol table is something that maps names to storage,
which sounds a lot like a Perl hash. In fact, you'd be ahead of the game, since the
Perl symbol table is indeed implemented using an ordinary Perl hash. You may also
have noticed, however, that there are several things called a in Perl, including $a, @a,
%a, &a, the filehandle a, and the directory handle a.

This is where the glob comes in. The symbol table maps a name like a to a glob,
which is a structure holding references to all the variables called a, as in Figure 1-2.

Figure 1-2. Consulting the symbol table, take 2

As you can see, variable look-up is done in two stages: first, finding the appropriate
glob in the symbol table; second, finding the appropriate part of the glob. This gives
us a reference, and assigning it to a variable or getting its value is done through this
reference.

Introspection | 3

Aliasing
This disconnect between the name look-up and the reference look-up enables us to

alias two names together. First, we get hold of their globs using the *name syntax,
and then simply assign one glob to another, as in Figure 1-3.

*p =*a;
*a

oldb

Figure 1-3. Aliasing via glob assignment

We've assigned b’s symbol table entry to point to a’s glob. Now any time we look up
a variable like %b, the first stage look-up takes us from the symbol table to a’s glob,
and returns us a reference to %a.

The most common application of this general idea is in the Exporter module. If I
have a module like so:
package Some::Module;

use base 'Exporter';
our @EXPORT = qw(useful);

sub useful { 42 }

then Exporter is responsible for getting the useful subroutine from the Some: :Module
package to the caller’s package. We could mock our own exporter using glob assign-
ments, like this: ' :

package Some::Module;
sub useful { 42 }

4 | Chapter1: Advanced Techniques

