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CHAPTER 1

SYSTEMS OF LINEAR EQUATIONS

1.1 THE VECTOR SPACE OF m x n MATRICES

Problems begin on page 17

EXERCISES
1.1 [-1 -
(a) 1 -
3

O Wl—=m—=

(e)
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1.3
1.5

1.6
1.9

1.10

1.12

1.13

1.16

SYSTEMS OF LINEAR EQUATIONS

C=A+B.
(a) [1]4—[112]+2[001]
0 0 0 1
@ el dloal+2fo o
1] [4] [ 9
(d) 2|=|5]- 3 +0]12
3 6] |3 15
3 -1 2 -9 3 -6
® _3[0 1 4_“[0 -3 —12]
P, = Py — P, — Py — P,, where P; is the ith row of P.
Each vector has a nonzero entry in the positions where the other two

vectors have zeros.
Suppose first that
Ay =xA| + YA,
Then
[0,0,8] = [x,2x + 5y, 3x + 6y]

Equating entries yields the system

0=x
0=2x+ 5y
8 = 3x + 6y

From the first equation, x = 0. It then follows from the second equa-
tion that y = 0, which is impossible due to the third equation. Thus
the independence is proved.

[1,-1,0],[1,0,0],[2,-2,0], and [4,—1,0] all belong to the span.
[1,1,1] does not because its last entry is nonzero.

(a)
(b)

—2X + Y =[1, 1,4] (other answers are possible)].
Let[x,y,z] = aX + bY = [—a — b,a + 3b, —a + 2b] and substi-
tute into 5x + 3y — 2z. You should get 0.

Any point [x,y, z] that does not solve the equation 5x + 3y —
2z = 0 will work—for example, [1, 1, 1].

(e)

No. From the second and third entries aX + bY has positive entries
only if both a and b are negative; hence the first entry is negative.



1.19

1.20

1.23

1.25

1.26
1.29

1.31

1.33

EXERCISES 5

(¢) No. If f(x) =acosx+ bsinx, then f(0) =a and f(n) = —a
would both be positive which is impossible.

(¢) Since the intersection of two planes through the origin is a line,
the span of {X, Y} must be a line. Hence let X = [x, y, x] where
z# 0, any Y = ¢X where ¢ # 1.

For the first part, use various values of a, b, and ¢ in aX + bY + cZ.
For the second part note that for all scalars a, b, and ¢ the (2, 1) entry
of aX + bY + ¢Z is zero. Hence any matrix W in M(2,2) such that
W, # 0 will not be in the span.

Let V and W be elements of the span. Then V =aX + bY and
W =cX+dY. Then for s,t€R, sV +tW = (as+ cH)X + (bs +
dr)Y which belongs to the span of X and Y.

Let the columns of Abe A;, i = 1,2,3. Then 3A; — A, =A,.

Let one row be a linear combination of the other rows. This is easily
done keeping all entries non-zero.

(a) Yes: D =5A-2B.
(b) Yes:B=A-C,soD=23A+2C.

(¢) You can say nothing about the dependence of A and B. Given A
and B, dependent or not, let C=A —Band D = 2A + B + 3C.

(b) sinhx = 3(e* - e™) = ;2¢") - :(3¢™)

(d) From the double angle formula for the cosine function
cos(2x) = —sin’x + cos® x.

) x+32=x2+6x+09.

(h) From the angle addition formulas for the sine and cosine func-
tions

sin (x + % ) = sin(xr /4) cos x + cos(z /4) sin x

2 .
= T(cosx + sinx)

cos (x + %) = cos(x /4) cos x — sin(x /4) cos x

2 .
= T(cos X — sinx)

sinx = é (sin (x+ %) = Co8 (x+ %))
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1.34

1.36

1.37

1.40

SYSTEMS OF LINEAR EQUATIONS

(i

In[(2 + 12 /6t + D] =3 In(® + 1) — In(x* +7)

=3In(2+1)=2InVx*+7.

The span is the set of polynomials of degree d < 2. Any pair of such
polynomials answers the first question.

(a) LetB= [x Y ].Then
0w

A+B=["+" y”’]:[x -"]
z+c¢ w+d z w

Hence, x+a=x,y+b=y,z+c=c¢,and w+d = d, which
imply that x = y =z = w = (. Hence, B = 0.
(b) Solved similarly to (a).

See Example 1.4 on page 12 of the text. For example to prove (i) we
let X € M(n,m), X = [x;]. For scalars k and [

(k + DX = [(k + Dx;]
= [k + Ix;]
= [kx;] + [lx;] = kX + IX

The steps are as shown below. The vector space properties used
were:

Step | (a) and (e),

Step 2 (c) and (e),

Step 3 (b), (e), and Proposition 1.2 on page 15,

Step 4 (b), (e), and (g),

Step 5 (),

Step 6 (h), (2),

Step 7 (j).
—(aX)+ (aX + (bY + cZ)) = —(aX)+ 0
(—=(aX) + aX) + (bY + cZ) = —(aX)

0+ (bY + cZ) = —1(aX)



SELF-STUDY QUESTIONS

bY + cZ = (—a)X
(=) '(bY + cZ) = (—a) " (~a)X)
((—a) 'B)Y + (—a)'0)Z2) = 1X

()7 (5)2-x

1.1.2 Applications to Graph Theory |
Problems begin on page 27

SELF-STUDY QUESTIONS

1.1 The matrices for parts (a), (b), and (c) are respectively

S —= O
— OO O

1
1
ol
0

oo = O
oo —0O
=l
—_— 0 = O =

SO = O =
o O O =

—OoOCc oOoOC oo
—_— OO0 0O O0O -~
— oo oo ~C
— OO0 O —~0O 0
— o Cc—COCC0o
- o = O O O O
©oO— 00O O0oCO0o

1.2 Possible routes are as in Figure 1.1

1.3 An airline would not have a flight from a given city A to itself.

/ |
A B
(a) (b)
FIGURE 1.1 Exercise 1.2 on page 27.




8 SYSTEMS OF LINEAR EQUATIONS

EXERCISES

1.45 We list the vertices in the order MGM, MGF, PGM, PGEF, M, S1,

S2, DI, D2.
(0 1 0001 00 0 O
000O0O0OO0OOU OO0
0001100000
00001 00000
0000O0OOTI1T1O0O0
0000 T1 01 1 11
0000O0O0OT1 1 1
000O0O0UO0OUO I I
000O0O0OOOUO0OO0
0000000000

2.0 2 1

11 2 1
1.46 5 B 5

03 0 3
1.2 SYSTEMS

Problems begin on page 38
In our solutions, Roman numerals refer to equations in a system. Thus,
for example “IV” is the fourth equation in a given system.

EXERCISES
149 Xisasolutionsince4:1=-2-1—-1—-1=0and1+3-1—-2-1-—
2-1=0.Yisnotsince | +3-2—-2-(-1)=2-1=7.

1.50 Let Z=aX+bY =[a+b,a+2b,a— b,a+ b]. This solves the
system if and only if

Ya+b)—2@+2)— (a—b)— (a+b)=0
(a+b)+3a+2)—2a—-b)—2a+b)=0



