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Preface

This volume is a sequel to the previously published Matriz Analysis and
includes development of further topics that support applications of matrix
theory. We refer the reader to the preface of the prior volume for many
general comments that apply here also. We adopt the notation and refer-
encing conventions of that volume and make specific reference to it [HJ] as
needed.

Matriz Analysis developed the topics of broadest utility in the connec-
tion of matrix theory to other subjects and for modern research in the sub-
ject. The current volume develops a further set of slightly more specialized
topics in the same spirit. These are: the field of values (or classical numeri-
cal range), matrix stability and inertia (including M-matrices), singular
values and associated inequalities, matrix equations and Kronecker prod-
ucts, Hadamard (or entrywise) products of matrices, and several ways in
which matrices and functions interact. Each of these topics is an area of
active current research, and several of them do not yet enjoy a broad exposi-
tion elsewhere.

Though this book should serve as a reference for these topics, the expo-
sition is designed for use in an advanced course. Chapters include motiva-
tional background, discussion, relations to other topics, and literature refer-
ences. Most sections include exercises in the development as well as many
problems that reinforce or extend the subject under discussion. There are, of
course, other matrix analysis topics not developed here that warrant atten-
tion. Some of these already enjoy useful expositions; for example, totally
positive matrices are discussed in [And] and [Kar].

We have included many exercises and over 650 problems because we
feel they are essential to the development of an understanding of the subject
and its implications. The exercises occur throughout the text as part of the
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Preface

development of each section; they are generally elementary and of immedi-
ate use in understanding the concepts. We recommend that the reader work
at least a broad selection of these. Problems are listed (in no particular
order) at the end of sections; they cover a range of difficulties and types
(from theoretical to computational) and they may extend the topic, develop
special aspects, or suggest alternate proofs of major ideas. In order to
enhance the utility of the book as a reference, many problems have hints;
these are collected in a separate section following Chapter 6. The results of
some problems are referred to in other problems or in the text itself. We
cannot overemphasize the importance of the reader’s active involvement in
carrying out the exercises and solving problems.

As in the prior volume, a broad list of related books and major surveys
is given prior to the index, and references to this list are given via mnemonic
code in square brackets. Readers may find the reference list of independent
utility.

We appreciate the assistance of our colleagues and students who have
offered helpful suggestions or commented on the manuscripts that preceded
publication of this volume. They include M. Bakonyi, W. Barrett, O. Chan,
C. Cullen, M. Cusick, J. Dietrich, S. H. Friedberg, S. Gabriel, F. Hall, C.-K.
Li, M. Lundquist, R. Mathias, D. Merino, R. Merris, P. Nylen, A. Sourour,
G. W. Stewart, R. C. Thompson, P. van Dooren, and E. M. E. Wermuth.

‘The authors wish to maintain the utility of this volume to the commu-
nity and welcome communication from readers of errors or omissions that
they find. Such communications will be rewarded with a current copy of all
known errata.

R. A H.
C.R.J.

Preface to the Second Printing

We have corrected all known errata in the first printing, polished the
exposition of a few points, noted the resolution of several conjectures, and
added some items to the notation list and index. It is a pleasure to
acknowledge helpful comments from our colleagues T. Ando, R. Bhatia, S.
Friedberg, D. Jesperson, B. Kroschel, I. Lewkowicz, C.-K. Li, R. Loewy, J.
Miao, and F. Uhlig.
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Chapter 1

The field of values

1.0 Introduction

Like the spectrum (or set of eigenvalues) o(-), the field of values F(-) is a
set of complex numbers naturally associated with a given n-by-n matrix A:

F(A)={z*Az: ze (" *z=1}

The spectrum of a matrix is a discrete point set; while the field of values can
be a continuum, it is always a compact convex set. Like the spectrum, the
field of values is a set that can be used to learn something about the matrix,
and it can often give information that the spectrum alone cannot give. The
eigenvalues of Hermitian and normal matrices have especially pleasant
properties, and the field of values captures certain aspects of this nice struc-
ture for general matrices.

1.0.1 Subadditivity and eigenvalues of sums

If only the eigenvalues o( A) and o(B) are known about two n-by-n matrices
A and B, remarkably little can be said about (A + B), the eigenvalues of
the sum. Of course, tr(4 + B) = tr A + tr B, so the sum of all the eigen-
values of A + Bis the sum of all the eigenvalues of A plus the sum of all the
eigenvalues of B. But beyond this, nothing can be said about the eigenvalues
of A + B without more information about 4 and B. For example, even if all
the eigenvalues of two n-by-n matrices A and B are known and fixed, the
spectral radius of A + B [the largest absolute value of an eigenvalue of
A + B, denoted by p(A + B)] can be arbitrarily large (see Problem 1). On
the other hand, if A and B are normal, then much can be said about the

1



The field of values

eigenvalues of A + B; for example, p(A + B) < p(A) + p(B) in this case.
Sums of matrices do arise in practice, and two relevant properties of the field
of values F(-) are:

(a) The field of values is subadditive: F(A4 + B)c F(A)+ F(B),
where the set sum has the natural definition of sums of all possible
pairs, one from each; and

(b) The eigenvalues of a matrix lie inside its field of values: o(4)C
F(4).

Combining these two properties yields the inclusions
o(A+ B)cF(A+ BYc F(A)+ F(B)

so if the two fields of values F(A) and F(B) are known, something can be
said about the spectrum of the sum.

1.0.2 An application from the numerical solution of partial differential
equations

Suppose that A = [a;;] € M, (R) satisfies

(a) Aistridiagonal (a;;=0for |i-j| >1),and
(b) a;;418;41,<0fori=1,.,n-1

Matrices of this type arise in the numerical solution of partial differential
equations and in the analysis of dynamical systems arising in mathematical
biology. In both cases, knowledge about the real parts of the eigenvalues of
A is important. It turns out that rather good information about the eigen-
values of such a matrix can be obtained easily using the field of values F ().

1.0.2.1  Fact: For any eigenvalue A of a matrix 4 of the type indicated,
we have

1< i<n 1< i<n

A proof of this fact is fairly simple using some properties of the field of
values to be developed in Section (1.2). First, choose a diagonal matrix D



1.0 Imtroduction

with positive diagonal entries such that D' AD= A = [a;;] satisfies a;; = -a,;
for j# 1. The matrix D = diag (d,,..., d,) defined by

AT |
dy=1,and d;= |f:.:_1| iy, d;>0,i=2,...,n
G1,i

will do. Since A and A are similar, their eigenvalues are the same. We then
have

Re o A) = Re o( A) C Re F(A4) = F(4(4 + AT))

= F(diag (ayy,..-) Gpy))
= Convex hull of {a,,,..., a,,} = [mip a
%

i Max a;; ]

3
The first inclusion follows from the spectral containment property (1.2.6),
the next equality follows from the projection property (1.2.5), the next

equality follows from the special form achieved for :4, and the last equality
follows from the normality property (1.2.9) and the fact that the eigenvalues
of a diagonal matrix are its diagonal entries. Since the real part of each
eigenvalue A € o(A) is a convex combination of the main diagonal entries a;;,
i=1,..., n, the asserted inequalities are clear and the proof is complete.

1.0.3 Stability analysis

In an analysis of the stability of an equilibrium in a dynamical system
governed by a system of differential equations, it is important to know if the
real part of every eigenvalue of a certain matrix A is negative. Such a
matrix is called stable. In order to avoid juggling negative signs, we often
work with positive stable matrices (all eigenvalues have positive real parts).
Obviously, 4 is positive stable if and only if -A is stable. An important
sufficient condition for a matrix to be positive stable is the following fact.

1.0.3.1 Fact: Let Ae M, If A+ A* is positive definite, then A is
positive stable.

This is another application of properties of the field of values F(-) to be
developed in Section (1.2). By the spectral containment property (1.2.6),
Re o(A4) CRe F(A), and, by the projection property (1.2.5), Re F(4)=
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F(4(A + A*)). But, since A + A* is positive definite, so is 4(4 + A*), and
hence, by the normality property (1.2.9), F (3(A + A*)) is contained in the
positive real axis. Thus, each eigenvalue of A has a positive real part, and A
is positive stable.

Actually, more is true. If A + A* is positive definite, and if P€ M,, is
any positive definite matrix, then PA is positive stable because

(PH)-1[PA]P} = P* AP} and

PtAPY + (PAAPH* = PY(A + A*)PH
where P? is the unique (Hermitian) positive definite square root of P. Since
congruence preserves. positive definiteness, the eigenvalues of PA have

positive real parts for the same reason as A. Lyapunov’s theorem (2.2.1)
shows that all positive stable matrices arise in this way.

1.04 An approximation problem

Suppose we wish to approximate a given matrix A€ M, by a complex
multiple of a Hermitian matrix of rank at most one, as closely as possible in
the Frobenius ndrm [| - ||5. This is the problem

minimize || 4 - czz*||§ for . € (" withz*z=1andce €  (1.0.4.1)

Since the inner product [A4,B] = tr AB* generates the Frobenius norm, we
have

| A - czz*||3 = [A - czz*,A - czz*]
= || 4|3 -2 Re T [4,22*] + | c|?

which, for a given unit vector z, is minimized by ¢ = [A4,zz*]. Substitution of
this value into (1.0.4.1) transforms our problem into

minimize (|| A]| - |[A,22*]|2) for z€ (® with z¥z =1
or, equivalently,

maximize |[A,z22*]| for z€ (" with z*z=1



1.1 Definitions

A vector z, that solves the latter problem (we are maximizing a continuous
function on a compact set) will yield a rank one solution [A4,zz§]zyz} to our
original problem. Since [4,22%] = tr Azz* = z* Az, we are led naturally to
finding a unit vector z such that the point z* Az in the field of values F(4)
has maximum distance from the origin. The absolute value of such a point is
called the numerical radius of A [often denoted by r(A4)] by analogy with the
spectral radius [often denoted by p( A)), which is the absolute value of a point
in the spectrum o(A) that is at maximum distance from the origin.

Problems

1. Consider the real matrices
_ l1-a 1 _ 1+ a 1
A= [aale1 o) 2 B8={ 010 o]

Show that o(A) and o(B) are independent of the value of a € R. What are
they? What is o(A + B)? Show that p(A + B)is unbounded as a — o.

2. In contrast to Problem 1, show that if A, Be M, are normal, then
p(A + B) < p(A) + p(B).

3. Show that "<" in (1.0.2(b)) may be replaced by "<," the main diagonal
entries a; may be complex, and Fact (1.0.2.1) still holds if a,; is replaced by
Re a,-‘-.

4. Show that the problem of approximating a given A € M, by a positive
semidefinite rank one matrix with spectral radius one can be solved if one
can find a unit vector z such that the point z2*Az in F(A) is furthest to the
right in the complex plane, that is, Re z* Azis maximized.

1.1 Definitions
In this section we define the field of values and certain related objects.

111 Definition. The field of valuesof A€ M, is
F(A)={z*Az:ze (" s*z=1}

Thus, F(-) is a function from M, into subsets of the complex plane.
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F(A) is just the normalized locus of the Hermitian form associated with A.
The field of values is often called the numerical range, especially in the
context of its analog for operators on infinite dimensional spaces.

Ezercise. Show that F(I) = {1} and F(al) = {a} for all a€ €. Show that

F[é 8] is the closed unit interval [0,1], and F[g §] is the closed unit disc
{ze C: |2] <1}.

The field of values F(A) may also be thought of as the image of the
surface of the Euclidean unit ball in €® (a compact set) under the continuous
transformation z— z*Az. As such, F(A)is a compact (and hence bounded)
set in €. An unbounded analog of F(-) is also of interest.

1.1.2 Definition. The angular field of values is
F'(A) =z {z*Az:z€ (", z# 0}

Ezercise. Show that F'(A) is determined geometrically by F(A); every
open ray from the origin that intersects F(A) in a point other than the
origin is in F’(A), and 0 € F’'(A) if and only if 0 € F(A4). Draw a typical
picture of an F(A) and F’(A) assuming that 0 ¢ F(4).

It will become clear that F’(A) is an angular sector of the complex
plane that is anchored at the origin (possibly the entire complex plane). The
angular opening of this sector is of interest.

1.1.3 Definition. The field angle © = ©(4) = O(F'(A)) = O(F(A)) of
A € M, is defined as follows:

(a) If O isaninterior point of F(4), then ©(4) = 2.

(b) 1f0is on the boundary of F(A4) and there is a (unique) tangent to
the boundary of F(A) at 0, then ©(4) = .

(c) I F(A)is contained in aline through the origin, ©(4) = 0.

(d) Otherwise, consider the two different support lines of F(A) that
go through the origin, and let ©(A4) be the angle subtended by
these two lines at the origin. If 0 ¢ F(A), these support lines will
be uniquely determined; if 0 is on the boundary of F(A), choose
the two support lines that give the minimum angle.
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We shall see that F(A4) is a compact convex set for every A € M,, so this
informal definition of the field angle makes sense. The field angle is just the
angular opening of the smallest angular sector that includes F(A), that is,
the angular opening of the sector F’( A).

Finally, the size of the bounded set F (A) is of interest. We measure its
size in terms of the radius of the smallest circle centered at the origin that
contains F (A).

1.1.4 Definition. The numerical radiusof A € M, is
r(A) = max {|z|: ze F(A)}

The numerical radius i8 a vector norm on matrices that is not a matrix norm
(see Section (5.7) of [HJ}).

Problems

1. Show that among the vectors entering into the definition of F (4), only
vectors with real nonnegative first coordinate need be considered.

2. Show that both F(4) and F(A) are simply connected for any A € M,

3. Show that for each 0< 6< x, there is an A€ M, with ©(4)=40. Is
©(A) = 37/2 possible?

4. Why is the "max" in (1.1.4) attained?

5. Show that the following alternative definition of F'(A) is equivalent to
the one given:

F(A)={z*Az/z*z: ze("and z# 0}
Thus, F(-) is a normalized version of F’(-).

6. Determine F[} ‘l,] , F[(l, } , and F[i }]

7. If A€ M, and a€ F(A), show that there is a unitary matrix Ue M,
such that ais the 1,1 entry of U*AU.

8. Determine as many different possible types of sets as you can that can
be an F’(A).
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9. Show that F(A*) = F(A) and F'(A*)=F (A) forall A€ M,

10. Show that all of the main diagonal entries and eigenvalues of a given
A€ M_ arein its field of values F(A).

1.2 Basic properties of the field of values

As a function from M, into subsets of €, the field of values F(-) has many
useful functional properties, most of which are easily established. We
catalog many of these properties here for reference and later use. The
important property of convexity is left for discussion in the next section.

The sum or product of two subsets of C, or of a subset of € and a scalar,
has the usual algebraic meaning. For example, if S, Tc(, then S+ T=
{s+t:seS te T}

1.21 Property: Compactness. Forall A€ M,

F(A)is a compact subset of €
Proof: The set F(A) is the range of the continuous function z— z* Az over
the domain {z: z€ C*, z*z = 1}, the surface of the Euclidean unit ball, which
is a compact set. Since the continuous image of a compact set is compact, it
follows that F(A) is compact. d
1.2.2 Property: Convezity. Forall A€ M,

F(A)is a convex subset of €

The next section of this chapter is reserved for a proof of this fundamen-

tal fact, known as the Toeplit>-Hausdorff theorem. At this point, it is clear
that F(A) must be a connected set since it is the continuous image of a

connected set.

Ezercise. If A is a diagonal matrix, show that F(4) is the convex hull of the
diagonal entries (the eigenvalues) of A.

The field of values of a matrix is changed in a simple way by adding a
scalar multiple of the identity to it or by multiplying it by a scalar.



