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STATIC GREEN’S FUNCTIONS IN
ANISOTROPIC MEDIA

This book provides the basic theory on static Green’s functions in
general anisotropic magnetoelectroelastic media and their detailed
derivations based on the complex variable method, potential method,
and integral transforms. Green’s functions corresponding to the
reduced cases are also presented, including those in anisotropic and
transversely isotropic piezoelectric and piezomagnetic media and
those in purely anisotropic elastic, transversely isotropic/ elastic,
and isotropic elastic media. Addressed problem domains are three-
dimensional (two-dimensional) infinite, half, and bimaterial spaces
(planes). Although the emphasis is on the Green’s functions related to
the line and point force, those corresponding to the important line and
point dislocation are also provided and discussed. This book provides
a comprehensive derivation and collection of the Green’s functions in
the concerned media, and as such, it should be a good reference book
for researchers and engineers and a textbook and reference book for
both undergraduate and graduate students in engineering and applied
mathematics.

Ernian Pan is a professor of civil engineering at the University of
Akron and a Fellow of both ASME and ASCE. He received his BS
from Lanzhou University, his MS from Peking University, and his
PhD from the University of Colorado at Boulder. His research
interests are in computational mechanics with applications to
anisotropic magnetoelectroelastic solids and nanostructures. As a well-
recognized expert in anisotropic and multilayered Green’s functions,
he has pioneered various benchmark solutions for multiphase and
multilayered composites with functionally graded materials and played
various active roles in, and contributed to, Green’s function research
and education. He has published more than 250 journal articles.

Weigiu Chen is a professor of engineering mechanics at Zhejiang
University, China. He received his BS and PhD degrees from Zhejiang
University in 1990 and 1996, respectively. He has engaged himself in
the mechanics of smart materials/structures and vibrations/waves in
structures for more than twenty years. He has coauthored more than
three hundred peer-reviewed journal articles, and he has published
books on the elasticity of transversely isotropic elastic and piezoelectric
solids in 2006 and 2001, respectively. He has received numerous awards,
including the National Science Fund for Excellent Young Scholars
from the NSFC in 2007 and the Award of Science and Technology (the
second grade) from the Ministry of Education, China, in 2012.



In the other class of methods the quantities to be determined
are expressed by definite integrals, the elements of the integrals
representing the effects of singularities distributed over the surface
or through the volume. This class of solutions constitutes an
extension of the methods introduced by Green in the Theory of the
Potential.

—A.E.H. Love, 1944



Preface

As one of the most powerful computational methods, boundary integral equation
method (with its discretized version being called boundary element method, or
BEM), has been very successfully applied to various practical engineering problems.
The BEM has also become a regular senior-level graduate and postgraduate course
in various engineering disciplines. Because Green’s functions are the key elements in
the BEM approach, their derivations and behaviors are important to researchers as
well as to students in almost all branches of science and engineering. With advanced
materials/composites of general anisotropy being created and fabricated, and novel
devices of multiphase coupling being designed, new Green’s functions in anisotropic
and multiphase materials are in need.

This book is intended to provide the basic theory on static Green’s functions in
general anisotropic magnetoelectroelastic media and their detailed derivations based
on the complex variable method, potential method, and integral transforms. Green’s
functions corresponding to the reduced (simple) cases are also presented including
those in anisotropic and transversely isotropic piezoelectric and piezomagnetic
media, and those in purely anisotropic elastic, transversely isotropic elastic and
isotropic elastic media. Addressed problem domains are three-dimensional (two-
dimensional) infinite, half, and bimaterial spaces (planes). While the emphasis is on
the Green’s functions related to the line and point forces (the first-order source),
those corresponding to the important (line and point) dislocation source are also
provided and discussed when convenient. It is the authors’ intention that this
book provides a relatively comprehensive derivation and collection of the Green’s
functions in the concerned media, and as such, it should be a good reference book in
the hands of researchers and engineers, and a textbook and reference book for both
undergraduate and graduate students in engineering and applied mathematics.

The book is divided into nine chapters. Chapter 1 is a brief introduction to the
Green’s function method and related theorems. Chapter 2 presents the governing
equations, including the force and charge balance equations, generalized constitutive
relations, and the gradient relations between the extended displacements and
strains. While in Chapter 3 we derive the two-dimensional Green’s functions in
elastic isotropic full and bimaterial planes, the Green’s functions in corresponding
anisotropic magnetoelectroelastic full and bimaterial planes are presented in
Chapter 4. Chapter 5 includes the three-dimensional Green’s functions in elastic
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Preface

isotropic full and bimaterial spaces. While Chapter 6 derives the three-dimensional
Green’s functions in a transversely isotropic magnetoelectroelastic full-space, the
three-dimensional Green’s functions in a transversely isotropic magnetoelectroelastic
bimaterial space are derived in Chapter 7. Chapter 8 presents the three-dimensional
Green’s functions in the corresponding anisotropic magnetoelectroelastic full-
space and Chapter 9 those in the corresponding anisotropic magnetoelectroelastic
bimaterial space. Direct and indirect applications of the Green’s functions to various
science and engineering fields are illustrated.



Acknowledgments

Both authors would like to express their sincere thanks to their family members for
their consistent and never-ending loves and supports. This is particularly true to the
first author as he started to put things together since spring 2011 when he took his
sabbatical leave.The first author would also like to thank his former graduate students
and colleagues for their contributions as cited in different chapters. Mr. Amir Molavi
Tabrizi and Mr. Ali Sangghaleh helped draw, respectively, all the figures on Green’s
function solutions in Chapter 5 and Chapter 8. Professor Peter Chung of ARL,
Professor John Albrecht of AFRL/DARPA, and Mr. Roger Green of ODOT shared
theirresearchideas and collaborated with the first author on various interesting topics.
Many colleagues from Green’s function and BEM communities provided constant
encouragements on writing this Green’s function book. In recent summers, the first
author visited Zhengzhou University and used his evenings and weekends on the
book draft. Constant help and support from colleagues at Zhengzhou University are
also key contributions to this book. The second author would like to thank Professor
Haojiang Ding, his Ph.D. adviser at Zhejiang University for introducing him into the
wonderful field of applied mechanics, especially the mechanics of anisotropic solids
with multifield coupling. He is extremely grateful to the National Natural Science
Foundation of China for its consistent support over the years.

Finally, both authors would like to thank Senior Editor Peter C. Gordon at
Cambridge University Press for his understanding, patience, and encouragement.
Our book draft was initially targeted on February 15, 2013, was then extended to
October 15,2013, and finally Peter basically sets “no deadline” for this book. Thanks
so much, Peter, for your great patience! Sincere thanks also go to Sara Werden and
Jayashree Prabhu for their help with various publication issues.

The first author would like to dedicate this book to his parents. Although they
never had the chance to enter school, they have provided the first author with the
best possible learning opportunity!

xvii



Contents

Preface

Acknowledgments

1 Introduction

1.0
11
1.2
13

1.4

15

1.6

1.7

2 Governing Equations

Introduction
Definition of Green’s Functions
Green’s Theorems and Identities
Green’s Functions of Potential Problems
1.3.1 Primary on 2D and 3D Potential Green’s Functions
1.3.2 Potential Green’s Functions in Bimaterial Planes
1.3.3 Potential Green’s Functions in Bimaterial Spaces
1.3.4 Potential Green’s Functions in an Anisotropic Plane or
Space
1.3.5 An Inhomogeneous Circle in a Full-Plane
1.3.5.1 A Source in the Matrix
1.3.5.2 A Source in the Circular Inhomogeneity
1.3.6 An Inhomogeneous Sphere in a Full-Space
1.3.6.1 A Source in the Sphere
1.3.6.2 A Source in the Matrix
Applications of Green’s Theorems and Identities
14.1 Integral Equations for Potential Problems
142 Boundary Integral Equations for Potential Problems
Summary and Mathematical Keys
1.5.1 Summary
15.2 Mathematical Keys
Appendix A: Equivalence between Infinite Series Summation
and Integral over the Image Line Source
References

2.0 Introduction

2.1

General Anisotropic Magnetoelectroelastic Solids

page xv

xvil

\O CC OO O\ M =

11

12
13
14
16
17
17
21
22
22
23
24
24
25

25
27

...... 29

29
29

vii



viii

Contents

2.1.1 Equilibrium Equations Including Also Those Associated
with the E- and H-Fields
2.1.2 Constitutive Relations for the Fully Coupled MEE Solid
2.1.3 Gradient Relations (i.e., Elastic Strain-Displacement,
Electric Field-Potential, and Magnetic Field-Potential
Relations)
2.2 Special Case: Anisotropic Piezoelectric or Piezomagnetic Solids
2.2.1 Piezoelectric Materials
2.2.2 Piezomagnetic Materials
2.3 Special Case: Anisotropic Elastic Solids
2.4 Special Case: Transversely Isotropic MEE Solids
2.5 Special Case: Transversely Isotropic Piezoelectric/Piezomagnetic
Solids
2.6 Special Case: Transversely Isotropic or Isotropic Elastic Solids
2.7 Special Case: Cubic Elastic Solids
2.8 Two-Dimensional Governing Equations
2.9 Extended Betti’s Reciprocal Theorem
2.10 Applications of Betti’s Reciprocal Theorem
2.10.1 Relation between Extended Point Forces and Extended
Point Dislocations
2.10.2 Relation between Extended Line Forces and Extended
Line Dislocations
2.11 Basics of Eshelby Inclusion and Inhomogeneity
2.11.1 The Eshelby Inclusion Problem
2.11.2 The Eshelby Inhomogeneity Problem
2.12 Summary and Mathematical Keys
2.12.1 Summary
2.12.2 Mathematical Keys
2.13 Appendix A: Governing Equations from the Energy Point of
View
2.14 Appendix B: Transformation of MEE Material Properties from
One Coordinate System to the Other
2.15 Appendix C: Some Important Unit Relations
2.16 References

Green’s Functions in Elastic Isotropic Full and

Bimaterial Planes .. .............. ittt

3.0 Introduction

3.1 Antiplane vs. Plane-Strain Deformation

3.2 Antiplane Solutions of Line Forces and Line Dislocations

3.3 Plane Displacements in Terms of Complex Functions

3.4 Plane-Strain Solutions of Line Forces and Line Dislocations
3.4.1 Plane-Strain Solutions of Line Forces
3.4.2 Plane-Strain Solutions of Line Dislocations

3.5 Bimaterial Antiplane Solutions of a Line Force and a Line
Dislocation
3.5.1 Bimaterial Antiplane Solutions of a Line Force

30
30

30
32
32
33
33
35

37
37
39
39
41
41

41

45
46
46
48
49
49
50

50

51
54
54

57

57
57
58
60
62
62
63

65



3.6

3.7

3.8

39

Contents

3.5.2 Bimaterial Antiplane Solutions of a Line Dislocation
Bimaterial Plane-Strain Solutions of Line Forces and Line
Dislocations
Line Forces or Line Dislocations Interacting with a Circular
Inhomogeneity
3.7.1 Antiplane Solutions
3.7.1.1 A Line Force Inside or Outside a Circular
Inhomogeneity
3.7.1.2 A Screw Dislocation Inside or Outside a Circular
Inhomogeneity
3.7.2 Plane-Strain Solutions
3.7.2.1 Line Forces or Edge Dislocations Outside a
Circular Inhomogeneity
3.7.2.2 Line Forces or Edge Dislocations Inside a
Circular Inhomogeneity
Applications of Bimaterial Line Force/Dislocation Solutions
3.8.1 Image Force of a Line Dislocation
3.8.1.1 PK Force on a Screw Dislocation in a Bimaterial
Plane
3.8.1.2 PK Force on a Screw Dislocation Interacting with
a Circular Inhomogeneity
3.8.1.3 PK Force on an Edge Dislocation in a Bimaterial
Plane

3.8.1.4 PK Force on an Edge Dislocation Interacting with

a Circular Inhomogeneity
3.8.2 Image Work of Line Forces
3.8.2.1 Image Work on an Antiplane Line Force in a
Bimaterial Plane
3.8.2.2 Image Work on an Antiplane Line Force
Interacting with a Circular Inhomogeneity
Summary and Mathematical Keys
39.1 Summary
3.9.2 Mathematical Keys

3.10 References

Green’s Functions in Magnetoelectroelastic Full and

Bimaterial Planes

4.0
4.1
42

4.3

Introduction

Generalized Plane-Strain Deformation

Solutions of Line Forces and Line Dislocations in a

2D Full-Plane

4.2.1 General Solutions of Line Forces and Line Dislocations
422 Green’s Functions of a Line Force

4.2.3 Green’s Functions of a Line Dislocation

Green’s Functions of Line Forces and Line Dislocations in a
Half-Plane

4.3.1 Green’s Functions of a Line Force in a Half-Plane

67

70

76
76

76

80

84

93
101
101

101

102

103

105
107

108

108
108
108
109
110

111

111
111

113
113
115
117

117
118



4.4

45

4.6

4.7

4.8

Contents

4.3.2 Green’s Functions of a Line Dislocation in a Half-Plane

43.3 Green’s Functions of Line Forces and Line Dislocations
in a Half-Plane under General Boundary Conditions

Green’s Functions of Line Forces and Line Dislocations in

Bimaterial Planes

4.4.1 General Green’s Functions of Line Forces and Line
Dislocations in Bimaterial Planes

4.42 Green’s Functions of Line Forces and Line
Dislocations in Bimaterial Planes under Perfect
Interface Conditions

Green’s Functions of Line Forces and Line Dislocations in

Bimaterial Planes under General Interface Conditions

Applications in Semiconductor Industry

4.6.1 Basic Formulations of the Eshelby Inclusion and
Quantum Wires

4.6.2 Quantum Wires in a Piezoelectric Full Plane

4.6.3 Quantum Wires in an MEE Half-Plane

4.6.4 Quantum Wires in a Piezoelectric Bimaterial Plane

Summary and Mathematical Keys

4.7.1 Summary

472 Mathematical Keys

References

Green’s Functions in Elastic Isotropic Full and

Bimaterial Spaces

5.0
51

52
53

5.4

5.5

Introduction

Green’s Functions of Point Forces in an Elastic Isotropic

Full-Space

Papkovich Functions and Green’s Representation

Papkovich Functions in an Elastic Isotropic Bimaterial Space

with Perfect Interface

53.1 A Point Force Normal to the Interface Applied in
Material 1

5.3.2 A Point Force Parallel to the Interface Applied in
Material 1

Papkovich Functions in an Elastic Isotropic Bimaterial Space

with Smooth Interface

5.4.1 A Point Force Normal to the Interface Applied in
Material 1

5.4.2 A Point Force Parallel to the Interface Applied in
Material 1

Papkovich Functions for Both Perfect-Bonded and Smooth

Interfaces of Bimaterial Spaces

5.5.1 Papkovich Functions for a Vertical Point Force in
Material 1

5.5.2 Papkovich Functions for a Horizontal Point Force in
Material 1

124

126
129

129
131
132
135
136
136

138
138

140

140

140
143

145

146

150

155

155

156

156

156

157



Contents

5.6 Green’s Displacements and Stresses in Elastic Isotropic
Bimaterial Spaces
5.6.1 Green’s Displacements and Stresses in Bimaterial Spaces
by a Vertical Point Force
5.6.2 Green’s Displacements and Stresses in Bimaterial Spaces
by a Horizontal Point Force
5.7 Brief Discussion on the Corresponding Dislocation Solution
5.8 Applications: Uniform Loading over a Circular Area on the
Surface of a Half-Space
5.9 Summary and Mathematical Keys
59.1 Summary
5.9.2 Mathematical Keys
5.10 Appendix A: Derivatives of Some Common Functions
5.11 Appendix B: Displacements and Stresses in a Traction-Free
Half-Space Due to a Point Force Applied on the Surface
5.12 Appendix C: Displacements and Stresses in a Half Space
Induced by a Point Force Applied on the Surface with Mixed
Boundary Conditions
5.13 References

Green’s Functions in a Transversely Isotropic
Magnetoelectroelastic Full Space . . . .............................

6.0 Introduction
6.1 General Solutions in Terms of Potential Functions
6.2 Solutions of a Vertical Point Force, a Negative Electric Charge,
or Negative Magnetic Charge
6.3 Solutions of a Horizontal Point Force along x-Axis
6.4 Various Decoupled Solutions
6.4.1 Piezoelectric Green’s Functions
6.4.1.1 Solutions of a Vertical Point Force and a Negative
Electric Charge
6.4.1.2 Solutions of a Horizontal Point Force
along x-Axis
6.4.2 Elastic Green’s Functions
6.4.2.1 Solutions of a Vertical Point Force
6.4.2.2 Solutions of a Horizontal Point Force
along x-Axis
6.5 Technical Applications
6.5.1 Eshelby Inclusion Solution in Terms of the Green’s
Functions
6.5.2 Elements of the Extended Eshelby Tensor
6.5.3 Special Cases
6.5.3.1 Special Geometric Cases
6.5.3.2 Special Material Coupling Cases
6.6 Summary and Mathematical Keys
6.6.1 Summary
6.6.2 Mathematical Keys

158

158

161
166

166
172
172
172
172

173

174
175

176

176
176

183
187
191
191

193

194
195
196

197
198

198
201
208
208
209
209
209
209

Xi



Xii

Contents

6.7 Appendix A: The Extended Green’s Functions and Their
Derivatives
6.7.1 The Extended Green’s Displacements
6.7.2 Derivatives of the Extended Green’s Displacements
6.7.2.1 Derivatives of the Extended Green’s
Displacements Due to the Point Source in
K-direction (K =3,4,5)
6.7.2.2 Derivatives of the Extended Green’s
Displacements Due to the Point Source in
x-direction
6.7.2.3 Derivatives of the Extended Green’s
Displacements Due to the Point Source in
y-direction
6.7.3 The Scaled Green’s Function Derivatives GX (/) in
Terms of the Unit Vector /
6.7.3.1 Due to the Point Source in K-direction
(K=34,5)
6.7.3.2 Due to the Point Source in x-direction
6.7.3.3 Due to the Point Source in y-direction
6.8 Appendix B: Functions Involved in the Eshelby Inclusion
Problem
6.8.1 A Spheroidal Inclusion (b = alc)
6.8.2 Three Special Geometric Cases of Inclusion (b = a/c)
6.9 References

Green’s Functions in a Transversely Isotropic
Magnetoelectroelastic Bimaterial Space . .........................

7.0 Introduction
7.1 Problem Description
7.2 Green’s Functions in a Bimaterial Space Due to Extended
Point Sources
7.2.1 Solutions for a Vertical Point Force, a Negative Electric
Charge, or a Negative Magnetic Charge
7.2.2  Solutions for a Horizontal Point Force
7.3 Reduced Bimaterial Spaces
7.3.1 Green’s Solutions for Piezoelectric Bimaterial Space
7.3.1.1 Solutions for a Vertical Point Force and a
Negative Electric Charge
7.3.1.2 Solutions for a Horizontal Point Force
7.3.2 Green’s Solutions for an Elastic Bimaterial Space
7.3.2.1 Solutions for a Vertical Point Force
7.3.2.2 Solutions for a Horizontal Point Force
7.4 Bimaterial Green’s Functions for Other Interface
Conditions
7.4.1 Solutions for a Smoothly Contacting and Perfectly
Conducting Interface

209
209
211

211

211

212

213

214
214
215

216
216
217
218

220

220
220

221

221
225
230
230

230
232
234
234
235

237

237



1.5

7.6

A

7.8

Contents

7.4.2 Solutions for a Mechanically Perfect and
Electromagnetically Insulating Interface
Half-Space Green’s Functions
7.5.1 Green’s Functions for an MEE Half-Space with Free
Surface
7.5.2 Green’s Functions for an MEE Half-Space with Surface
Electrode
7.5.3 Surface Green’s Functions
7.5.3.1 Extended Boussinesq Solutions for a Vertical
Point Force, Electric Charge, or Magnetic Charge
7.5.3.2 Extended Cerruti Solutions for a Horizontal Point
Force
Technical Application: Indentation over an MEE Half-Space
7.6.1 Theory of Indentation
7.6.2 Indentation over an MEE Half-Space
Summary and Mathematical Keys
7.7.1 Summary
7.7.2 Mathematical Keys
References

Green’s Functions in an Anisotropic Magnetoelectroelastic

Full-Space

8.0
8.1
8.2
8.3
8.4
8.5
8.6

8.7

8.8
8.9

Introduction

Basic Equations in 3D MEE Full-Space

Green’s Functions in Terms of Line Integrals

Green’s Functions in Terms of Stroh Eigenvalues

Green’s Functions Using 2D Fourier Transform Method

Green’s Functions in Terms of Radon Transform

Green’s Functions in Terms of Stroh Eigenvalues and

Eigenvectors

8.6.1 General Definitions

8.6.2 Orthogonal Relations

8.6.3 Variation and Integration of Stroh Quantities in the
(m,n)-Plane and the Green’s Functions

8.6.4 Derivatives of Extended Green’s Displacements

Technical Applications of Point-Source Solutions

8.7.1 Couple Force, Dipoles, and Moments

8.7.2 Relations among Dislocation, Faulting, and Force
Moments

8.7.3 Equivalent Body Forces of Dislocations

Numerical Examples of Dislocations

Summary and Mathematical Keys

89.1 Summary

8.9.2 Mathematical Keys

8.10 Appendix A: Some Basic Mathematical Formulations
8.11 References

238
241

241

242
243

243

244
246
246
249
257
257
257
257

260

260
260
261
265
267
274

275
275
276

276
A
281
281

282
285
287
288
288
290
291
292

xiii



xiv Contents

9 Green’s Functions in an Anisotropic Magnetoelectroelastic

Bimaterial Space. .......... .. ... .. 293
9.0 Introduction 293
9.1 Problem Description 293
9.2 Solutions in Fourier Domain for Forces in Material 1 294
9.3 Solutions in Physical Domain for Forces in Material 1 296
9.4 Solutions in Physical Domain for Forces in Material 1 with
Imperfect Interface Conditions 299
9.4.1 Imperfect Interface Type 1 299
9.4.2 Imperfect Interface Type 2 300
9.5 Special Case: Upper Half-Space under General Surface
Conditions 302
9.6 Bimaterial Space with Extended Point Forces in Material 2 304
9.7 Special Case: Lower Half-Space under General Surface
Conditions 306
9.8 Technical Application: Quantum Dots in Anisotropic
Piezoelectric Semiconductors 307
9.8.1 Analytical Integral over Flat Triangle, the Anisotropic
MEE Full-Space Case 308
9.8.2 Analytical Integral over a Flat Triangle, the Anisotropic
MEE Bimaterial Space Case 311
9.9 Numerical Examples 312
9.9.1 A Pyramidal QD in a Piezoelectric Full-Space 312
9.9.2 QD Inclusion in a Piezoelectric Half-Space 313
9.9.3 Triangular and Hexagonal Dislocation Loops in Elastic
Bimaterial Space 324
9.10 Summary and Mathematical Keys 326
9.10.1 Summary 326
9.10.2 Mathematical Keys 326
9.11 References 327

Index 329



l Introduction

1.0 Introduction

Green’s function is named after George Green for his fundamental contributions
to potential theory, reciprocal relations, singular functions, and representative
theorem. Green’s functions can be extremely powerful in solving various differential
equations and are also the essential components in the boundary integral equation
method. As singular solutions to certain differential equations in their most
generalized mathematical form, such solutions can find applications in nearly every
field of science and engineering. They have been and will be continuously utilized
in earth science/geophysics; civil, mechanical, and aerospace engineering; physics
and material science; nanoscience/nanotechnology; biotechnology; information
technology, and so forth. In this chapter, we define the Green’s function and introduce
its basic features, along with derivations of some of the common Green’s functions
in potential problems.

1.1 Definition of Green’s Function

Green was a mathematician and physicist of United Kingdom (Cannell 2001; Challis
and Sheard 2003). He not only developed this powerful tool for solving linear
differential equations, but also contributed to various problems in elasticity. For
instance, he offered a derivation of the governing equations of elasticity without
using any hypothesis on the behavior of the molecular structure of the solids, and
was able to show further that twenty-one elastic constants are required in general to
account for the general anisotropy of elastic property (Timoshenko 1953). He further
explained how symmetry can reduce the independent number of these constants.

Green’s function is also called singular function, which is the fundamental
solution of a (partial or ordinary) differential equation (or system of equations) in
the problem domain (usually of infinite size) where the inhomogeneous term in the
equation is replaced by the Dirac delta function.

As an example, let us consider the following differential equation in a two-
dimensional (2D) or three-dimensional (3D) infinite and homogeneous domain,

Lu(r) = f(r) (1.1)



