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PREFACE

This book is intended for students of mathematics, physics, and engineer-
ing at the advanced undergraduate level or beyond. It is primarily a text for a
course-at the advanced undergraduate level, but I hope it will also be useful as a
reference for people who have taken such a course and continue to use Fourier
analysis in their later work. The reader is presumed to have (i) a solid back-
ground in calculus of one and several variables, (ii) knowledge of the elementary
theory of linear ordinary differential equations (i.e., how to solve first-order linear
equations and second-order ones with constant coefficients), and (iii) an acquain-
tance with the complex number system and the complex exponential function
e*HY = ¢*(cosy + isiny). In addition, the theory of analytic functions (power
series, contour integrals, etc.) is used to a slight extent in Chapters S, 6, 7, and 9
and in a serious way in Sections 8.2, 8.4,-8.6, 10.3, and 10.4. I have written the
book so that lack of knowledge of complex analysis is not a serious impediment;
at the same time, for the benefit of those who do know the subject, it would be a
shame not to use it when it arises naturally. (In particular, the Laplace transform
without analytic functions is like Popeye without his spinach.) At any rate, the
facts from complex analysis that are used here are summarized in Appendix 2.

The subject of this book is the whole circle of ideas that includes Fourier
seriés, Fourier and Laplace transforms, and eigenfunction expansions for differ-
ential operators. I have tried to steer a middle course.between the mathematics-
for-engineers type of book, in which Fourier methods are treated merely-as a tool
for solving applied problems, and the advanced theoretical treatments aimed at
pure mathematicians. Since I thereby hope to please both the pure and the ap-
plied factions but run the risk of pleasing neither, I should give some explanation
of what I'ami trying to do and why I am trying to do it.

" First, this book deals almost exclusively with those aspects of Fourier analysis
that are useful in physics and engineering rather than those of interest only in
pure mathematics. On the other hand, it is a book on applicable mathematics
rather than applied mathematics: the principal role of the physical applications
herein is to illustrate and illuminate the mathematics, not the other way around.
1 have refrained from including many applications whose principal conceptual
content comes from Subject X rather than Fourier analysis, or whose appreciation
requires specialized knowledge from Subject X; such things belong more properly
in a'book on Subject X where the background can be more fully explained. (Many
of ‘my favorite applications come from quantum physics, but in accordance with
this principle I have mentioned them only briefly.) Similarly, I have not worried
100 much about the physical details of the applications studied here. For example,
when I think about the 1-dimensional heat equation I usually envision a long thin
rod, but one who prefers to envision a 3-dimensional slab whose temperature
varies only along one axis is free to do so; the mathematics is the same.

vil



vl Preface

Second, there is the question of how much emphasis to lay on the theoretical
aspects of the subject as opposed to problem-solving techniques. I firmly believe
that theory — meaning the study of the ideas underlying the subject and the
reasoning behind the techniques — is of intellectual value to everyone, applied or
pure. On the other hand, I do not take “theory” to be synonymous with “logical
rigor.” 1 have presented complete proofs of the theorems when it is not too
onerous ta do so, but I often merely sketch the technical parts of an argument.
(If the technicalities cannot easily be filled in by someone who is conversant
with such things, I usually give a reference to a complete proof elsewhere.) Of
course, where to draw the line is a matter of judgment, and I suppose nobody will
be wholly satisfied with my choices. But those instructors who wish to include
more details: in their lectures are free to do so, and readers who tire of a formal
argument have only to skip to the end-of-proof sign L Thus, the book should be
fairly flexible. with regard to the level of rigor its users wish to adopt.

.- One feature of the theoretical aspect of this book deserves special mention.
The development of Lebesgue integration and functional analysis in the period
1900-1950 has led to enormous advances in our understanding of the concepts
underlying Fourier analysis. For example, the completeness of L2 and the shift
from pointwise convergence to norm convergence or weak convergence simplifies
much of the discussion of orthonormal bases and the validity of series expansions.
These advances have usually not found their way into application-oriented books
because a rigorous development of them necessitates the building of too much
machinery. However, most of this machinery can be ignored if one is willing to
take a few things on faith, as one takes the intermediate value theorem on faith in
freshman calculus. Accordingly, in §3.3~4 I assert the existence of an improved
theory of integration, the Lebesgue integral, in the context of which one has
(i) the completeness of L2, (ii) the fact that “nice” functions are dense in L2,
and (iii) the dominated convergence theorem. I then proceed to use these facts
without further ado. (The dominated convergence theorem, it should be noted,
is a wonderful tool even in the context of Riemann integrable functions.) Later,
in Chapter 9, I develop the theory of distributions as linear functionals on test
functions, the motivation being that the value of a distribution on a test function
is a smeared-out version of the value of a function at a point. Discussion of
functional-analytic technicalities (which are largely irrelevant at the elementary
level) is reduced to a minimum.

. With the exception of the prerequisites and the facts about Lebesgue integra-
tionmentioned above, this book is more or less logically self-contained. However,
certain assertions made early in the book are established only much later:

(i) The completeness of the eigenfunctions of regular Sturm-Liouville problems

. is stated in §3.5 and proved, in the case of separated boundary conditions,
in §10.3. C ~

(if) ‘The asymptotic formulas for Bessel functions given in §5.3 are proved via

Watson’s lemma in §8.6.

(iii) The proofs of completeness of Legendre, Hermite, and Laguerre polynomials
in Chapter 6 rely on the Weierstrass approximation theorem and the Fourier
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inversion theorem, proved in Chapter 7.
(iv) The discussion of weak solutions of differential equations in §9.5 justifies
many of the formal calculations with infinite series in the earlier chapters.
Thus, among the applications of the material in the later part of the book is the
completion of the theory developed in the earlier part.

CHAPTER DEPENDENCE DIAGRAM

The main dependences among the chapters are indicated in the accompany-
ing diagram, but a couple of additional comments are in order.

First, there are some minor dependences that are not shown in the diagram.
For example, a few paragraphs of text and a few exercises in Sections 6.3, 7.5,
8.1, and 8.6 presuppose a knowledge of Bessel functions, but one can simply omit
these bits if one has not covered Chapter 5. Also, the discussion of techniques
in §4.1 is relevant to the applied problems in later chapters, particularly in §5.5.

Second, although Chapter 10 depends on Chapter 9, except in §10.2 the
only part of distribution theory needed in Chapter 10 is an appreciation of delta
functions on the real line and the way they arise in derivatives of functions with
jump discontinuities. Hence, one could cover Sections 10.1 and 10.3-4 after an
informal discussion of the delta function, without going through Chapter 9.

There is enough material in this book for a full-year course, but one can also
select various subsets of it to make shorter courses. For a one-term course one
could cover Chapters 1-3 and then select topics ad libitum from Chapters 4-7.
(If one wishes to present some applications of Bessel functions without discussing
the theory in detail, one could skip from the recurrence formulas in §5.2 to the
statement of Theorem 5.3 at the end of §5.4 without much loss of continuity.) I
have taught a one-quarter (ten-week) course from Chapters 1-5 and a sequel to
it from Chapters 7-10, omitting a few items here and there.

One further point that instructors should keep in mind is the following. Most
of the book deals with rather concrete ideas and techniques, but there are two
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places where concepts of a more general and abstract nature are discussed in a
serious way: Chapter 3 (L? spaces, orthogonal bases, Sturm-Liouville problems)
and Chapter 9 (functions as linear functionals, generalized functions). These
parts are likely to be difficult for students who have had little experience with
abstract mathematics, and instructors should plan their courses accordingly.

Fourier analysis and its allied subjects comprise an enormous amount of
mathematics, about which there is much more to be said than is included in this
book. I hope that my readers will find this fact exciting rather than dismaying.
Accordingly, I have included a sizable although not exhaustive bibliography of
books and papers to which the reader can refer for more information on things
that are touched on lightly here. Most of these references should be reasonably
accessible to the students for whom this book is primarily intended, but a few of
them are of a considerably more advanced nature. This is inevitable; the topics in
this book impinge on a lot of sophisticated material, and the full story on some
of the things discussed here (singular Sturm-Liouville problems, for instance)
cannot be told without going to a deeper level. But these advanced references
should be of use to those who have the necessary background, and may at least
serve as signposts to those who have yet to acquire it.

I am grateful o my colleagues Donald Marshall, Douglas Lind, Richard Bass,
and James Morrow and to the students in our classes for pointing out many mis-
takes in the first draft of this book and suggesting a number of improvements.
I also wish to thank the following reviewers for their helpful suggestions in re-
vising the manuscript: Giles Auchmuty, University of Houston; James Herod,
Georgia Institute of Technology; Raymond Johnson, University of Maryland;
Francis Narcowich, Texas A & M University; Juan Carlos Redondo, Univer-
sity of Michigan; Jeffrey Rauch, University of Michigan; Jesus Rodriguez, North
Carolma S\m University; and Michael Vogelius, Rutgers University.

Gerald B. Folland
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CHAPTER 1
OVERTURE

The subject of this book is Fourier analysis, which may be described as a collection
of related techniques for resolving general functions into sums or integrals of
simple functions or functions with certain special properties. Fourier analysis is
a powerful tool for many problems, and especially for solving various differential
equations of interest in science and engineering. The purpose of this introductory
chapter is to provide some background concerning partial differential equations.
Specifically, we introduce some of the basic equations of mathematical physics
that will provide examples and motivation throughout the book, and we discuss
a technique for solving them that leads directly to problems in Fourier analysis.

At the outset, let us present some notations that will be used repeatedly.
The real and complex number systems will be denoted by R and C, respectively.
We shall be working with functions of one or several real variables xi,..., x».
We shall denote the ordered n-tuple (x;,...,xs) by x and the space of all such
ordered n-tuples by R”.

In most of the applications, » will be 1, 2, 3, or 4, and the variables x; will
denote coordinates in one, two, or three space dimensions, together with time.
In this situation we shall usually write x, y, z instead of Xx;, x;, x5 for the spatial
variables, and we shall denote the time variable by . Moreover, we shall use the
common subscript notation for partial derivatives:

_ Ou _ 0% _ 8%
Ux = 3—;, Uxx = a--‘-x—f Uxy = M’ etc.

A function f of one real variable is said to be of class C*) on an interval I
if its derivatives f',..., f**) exist and are continuous on /. Similarly, a function
of n real variables is said to be of class C*) on a set D C R” if all of its partial
derivatives of order < k exist and are continuous on D, If the function possesses
continuous derivatives of all orders, it is said to be of class C(*).

Finally, we use the comimon notation with square and round brackets for
closed and open intervals in the real line R:

{a,b]={x:a<x<b}, (a,b) ={x:a<x < b},
[a,b)={x:a< x<b}, (a,b]={x:a<x <b}.




2 Chapter 1. Overture
1.1 Some equations of mathematical physics

In order to understand the significance of the ideas as they arise, it will be useful
to have a few physical applications in mind as examples of the sort of problems we
are trying to solve. Accordingly, we begin with a brief and informal discussion of
some of the basic partial differential equations of classical mathematical physics.
These equations all involve a fundamental differential operator known as the
Laplacian, which is defined as follows. If u is a function of the real variables

Xi,...,xn of class C2), the Laplacian of u is the function V2u defined by
8*u  8*u 8%u
Viu=2S 4+ =+t = 1.1
“ ox?  0x3 ax2 (1.1)
The first of the equations we shall study is the wave equation:
0%u 22
un=-(-9—t—2—=c V- u. (1.2)

Here u represents a wave traveling through an n-dimensional medium—where, in
practice, n will usually be 1, 2, or 3. More precisely, x,...,Xn are the coordinates
of a point x in the medium,; ¢ is the time; ¢ is the speed of propagation of waves
in the medium; and u(x, ) is the amplitude of the wave at position x and time ¢.

The wave equation provides a reasonable mathematical model for a number
of physical processes, such as the following:

(a) Vibrations of a stretched string, such as a guitar string.

(b) Vibrations of a column of air, such as an organ pipe or clarinet.

(c) Vibrations of a streiched membrane, such as a drumhead.

(d) Waves in an incompressible fluid, such as water.

(e) Sound waves in air or other elastic media.

(f) Electromagnetic waves, such as light waves and radio waves.
The number » of spatial dimensions is 1 in examples (a) and (b), 2 in examples
(c) and (d) (since the waves appear on the surface of the water), and 3 in ex-
amples (e) and (f). In (a), (c), and (d), u represents the transverse displacement
of the string, membrane, or fluid surface; in (b) and (e), u represents the lon-
gitudinal displacement of the air; and in (f), « is any of the components of the
electromagnetic field.

We shall not attempt to derive the wave equation from physical principles
here, since each of the preceding examples involves different physics. Examples
(a) and (f) are explained in Appendix 1; discussions of the others may be found,
for example, in Ingard [32]* and Taylor [S1]. We should point out, however,
that in most cases the derivation involves making some simplifying assumptions.
Hence, the wave equation gives only an approximate description of the actual
physical process, and the validity of the approximation will depend on whether

* Numbers in brackets refer to the bibliography at the end of the book.



1.1 Some equations of mathematical physics 3

certain physical conditions are satisfied. For instance, in example (a) the vibra-
tions should be small enough so that the string is not stretched beyond its limits
of elasticity. In example (f) it follows from Maxwell’s equations, the fundamen-
tal equations of electromagnetism, that the wave equation is satisfied exactly in
regions containing no electric charges or currents — but of course the assumption
of no charges or currents can only be approximately valid in the real world. (Of
course, it is precisely the fact that the wave equation is only an approximation
that allows it to be a useful model in so many different situations!)
The next basic differential equation on our list is the heat equation:

ur = kviu. (1.3)

This equation describes the diffusion of thermal energy in a homogeneous mate-
rial (that is, one whose composition does not change from point to point). As in
the wave equation, the variables x; are spatial coordinates and ¢ is time, but now
u(x,t) is the temperature at a position x and time ¢, and k is a constant called the
“thermal diffusivity” of the material. A brief derivation is given in Appendix 1.
As for the number of spatial variables, the case n = 3 is the most fundamental
from the physical point of view, but the cases n» = 1 and n = 2 are also of in-
terest as models of situations where the heat flow is practically all in one or two
directions. For example, the heat equation with n = 1 can be used to describe
heat flow along a wire or rod, provided that heat flow in directions perpendicular
to the axis of the rod can be neglected. It can also be used to describe heat flow
in a slab of material, such as a wall separating two rooms, where only the heat
flow from one room toward the other (as opposed to flow in directions parallel
to the wall) is significant.

Two warnings: (i) The heat equation can be used to model heat flow in both
solids and fluids (liquids and gases), but in the latter case it does not take any
account of the phenomenon of convection; that is, it will provide a reasonable
model only if conditions are such as to exclude any macroscopic currents in the
fluid. (ii) The heat equation is not a fundamental law of physics, and it does not
give reliable answers at very low or very high temperatures. In particular, it is
obvious that if u is a solution then so is u + ¢ for any constant c; thus the heat
equation does not recognize the existence of absolute zero!

The heat equation can also be used to model other diffusion processes. For
example, if a drop of red dye is placed in a body of water, the dye will gradually
spread out and permeate the entire body. If convection effects are negligible,
equation (1.3) will describe the diffusion of the dye through the water (u(x, ¢)
now being the concentration of dye at position x and time ?).

Next, we come to the Laplace equation:

Viu=0. (1.4)

Laplace’s equation arises in a number of different contexts. It is satisfied by the
electrostatic potential in any region containing no electric charge, and by the grav-
itational potential in any region containing no mass. It is also the equation that
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governs standing waves and steady-state heat distributions — that is, solutions
of the wave equation and the heat equation that are independent of time. We
shall meet other applications of it later on.

Partial differential equations such as the ones discussed above typically have
solutions in such great abundance that there is no reasonable way of giving an
explicit description of all of them. The most common way of pinning down
a particular solution is to impose some boundary conditions. Different types of
differential equations require different types of boundary conditions, and the par-
ticular conditions that are appropriate for a given physical problem will depend
on the particular physical situation. The physics is generally a good guide to
the mathematics: “reasonable” physical conditions usually lead to “reasonable”
mathematical problems.

FiGURE 1.1. The region D in x-space and the region D in xt-space.

These matters may best be explained by examining a few examples. Let us
consider the heat equation: suppose we are interested in studying the diffusion
of heat in a body that occupies a bounded region D of x-space, given the initial
temperature distribution in the body. That is, we wish to solve the heat equation
(1.3) in the region

5:{(x,t):xeD, t>0}

of (x, )-space subject to the initial condition

u(x,0) = f(x), (1.5)

where f(x) is the temperature distribution at time ¢ = 0. (See Figure 1.1.) Equa-
tion (1.5) is a condition on u on the “horizontal” part of the boundary of D,
but it is not enough to specify u completely; we also need a boundary condition
on the “vertical” part of the boundary to tell what happens to the heat when it
reaches the boundary surface S of the spatial region D. Here the particular phys-
ical conditions at hand must be our guide. One reasonable assumption is that S
is held at a constant temperature g (for example, by immersing the body in a
bath of ice water), thus:

u(x,t) =uy forxesS, t>0. (1.6)
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Another reasonable assumption is that D is insulated, so that no heat can flow in
or out across S. Mathematically, this amounts to requiring the normal derivative
of u along the boundary S to vanish:

(Vu-n)(x,t)=0 forxesS, t>0. (1.7)

Here Vu is the gradient of ¥ in x and n is the unit outward normal vector to S
(and we are implicitly assuming that the surface S is smooth, so that n is well-
defined). A more realistic assumption than either (1.6) or (1.7) is that the region
outside D is held at a constant temperature u,, and the rate of heat flow across
the boundary S is proportional to the difference in temperatures on the two sides:

(Vu-n)(x,t) + a(u(x, t) - uo) =0 forxesS, t>0. (1.8)

This is Newton’s law of cooling, and @ > 0 is the proportionality constant. The
conditions (1.6) and (1.7) may be regarded as the limiting cases of (1.8) as a —
ora— 0.

At any rate, it turns out that the initial condition (1.5) together with any one
of the boundary conditions (1.6), (1.7), or (1.8) leads to a well-posed problem: one
having a unique solution that depends continuously (in some appropriate sense)
on the initial data /. The same discussion is also valid for the heat equation in
one or two space dimensions. (In one space dimension, the “region” D is just an
interval in the x-axis, and the “normal derivative” Vu - n is just ux at the right
endpoint and —ux at the left endpoint.)

A similar analysis applies to boundary value problems for the wave equation
(1.2), with one significant difference: the wave equation is second-order in the
time variable ¢, whereas the heat equation is only first-order in ¢. For this reason,
in solving the wave equation it is appropriate to specify not only the initial values
of u as in (1.5) but also the initial velocity u;:

u(x,0) = f(x), u/(x,0) = g(x) forxeD. (1.9

The imposition of the initial conditions (1.9) together with a boundary condition
of the form (1.6), (1.7), or (1.8) leads to a unique solution of the wave equation.
For example, to analyze the motion of a vibrating string of length / that is fixed at
both endpoints, we take the “region” D to be the interval [0, /] on the x-axis and
solve the one-dimensional wave equation with boundary conditions (1.6) (where
uy = 0) and (1.9):

Uy = Ctuxx, u(x,0) = f(x) and wu(x,0)=g(x) for0<x<l|,
u(0,8) =u(l,t)=0 fort>0.

Remark: The “velocity” u; is not the same as the constant ¢ in the wave
equation. c is the speed of propagation of the wave along the string, whereas v,
is the rate of change of the displacement of a particular point on the string. (The
same is true for waves in media other than strings.)




