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Preface

In 1970, my former academic teacher Roland Bulirsch gave an exercise to
his students, which indicated the fascinating invariance of the ordinary New-
ton method under general affine transformation. To my surprise, however,
nearly all global Newton algorithms used damping or continuation strate-
gies based on residual norms, which evidently lacked affine invariance. Even
worse, nearly all convergence theorems appeared to be phrased in not affine
invariant terms, among them the classical Newton-Kantorovich and Newton-
Mysovskikh theorem. In fact, in those days it was common understanding
among numerical analysts that convergence theorems were only expected to
give qualitative insight, but not too much of quantitative advice for applica-
tion, apart from toy problems.

This situation left me deeply unsatisfied, from the point of view of both math-
ematical aesthetics and algorithm design. Indeed, since my first academic
steps, my scientific guideline has been and still is that ‘good’ mathematical
theory should have a palpable influence on the construction of algorithms,
while ‘good’ algorithms should be as firmly as possible backed by a transpar-
ently underlying mathematical theory. Only on such a basis, algorithms will
be efficient enough to cope with the enormous difficulties of real life problems.

In 1972, I started to work along this line by constructing global Newton algo-
rithms with affine invariant damping strategies [59]. Early companions on this
road were Hans-Georg Bock, Gerhard Heindl, and Tetsuro Yamamoto. Since
then, the tree of affine invariance has grown lustily, spreading out in many
branches of Newton-type methods. So the plan of a comprehensive treatise
on the subject arose naturally. Florian Potra, Ekkehard Sachs, and Andreas
Griewank gave highly valuable detailed advice. Around 1992, a manuscript
on the subject with a comparable working title had already swollen to 300
pages and been distributed among quite a number of colleagues who used it
in their lectures or as a basis for their research. Clearly, these colleagues put
screws on me to ‘finish’ that manuscript.

However, shortly after, new relevant aspects came up. In 1993, my former
coworker Andreas Hohmann introduced affine contravariance in his PhD
thesis [119] as a further coherent concept, especially useful in the context
of inexact Newton methods with GMRES as inner iterative solver. From then
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on, the former ‘affine invariance’ had to be renamed, more precisely, as affine
covariance. Once the door had been opened, two more concepts arose: in
1996, myself and Martin Weiser formulated affine conjugacy for convex opti-
mization [84]; a few years later, I found affine similarity to be important for
steady state problems in dynamical systems. As a consequence, I decided to
rewrite the whole manuscript from scratch, with these four affine invariance
concepts representing the columns of a structural matrix, whose rows are the
various Newton and Gauss-Newton methods. A presentation of details of the
contents is postponed to the next section.

This book has two faces: the first one is that of a textbook addressing itself
to graduate students of mathematics and computational sciences, the second
one is that of a research monograph addressing itself to numerical analysists
and computational scientists working on the subject.

As a textbook, selected chapters may be useful in classes on Numerical Anal-
ysis, Nonlinear Optimization, Numerical ODEs, or Numerical PDEs. The
presentation is striving for structural simplicity, but not at the expense of
precision. It contains a lot of theorems and proofs, from affine invariant ver-
sions of the classical Newton-Kantorovich and Newton-Mysovskikh theorem
(with proofs simpler than the traditional ones) up to new convergence theo-
rems that are the basis for advanced algorithms in large scale scientific com-
puting. I confess that I did not work out all details of all proofs, if they were
folklore or if their structure appeared repeatedly. More elaboration on this
aspect would have unduly blown up the volume without adding enough value
for the construction of algorithms. However, 1 definitely made sure that each
section is self-contained to a reasonable extent. At the end of each chapter,
exercises are included. Web addresses for related software are given.

As a research monograph, the presentation (a) quite often goes into the depth
covering a large amount of otherwise unpublished material, (b) is open in
many directions of possible future research, some of which are explicitly indi-
cated in the text. Even though the experienced reader will have no difficulties
in identifying further open topics, let me mention a few of them: There is no
complete coverage of all possible combinations of local and global, exact and
inexact Newton or Gauss-Newton methods in connection with continuation
methods—Ilet alone of all their affine invariant realizations; in other words,
the above structural matrix is far from being full. Moreover, apart from con-
vex optimization and constrained nonlinear least squares problems, general
optimization and optimal control is left out. Also not included are recent re-
sults on interior point methods as well as inverse problems in L2, even though
affine invariance has just started to play a role in these fields.
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Generally speaking, finite dimensional problems and techniques dominate the
material presented here—however, with the declared intent that the finite
dimensional presentation should filter out promising paths into the infinite
dimensional part of the mathematical world. This intent is exemplified in
several sections, such as

o Section 6.2 on ODE initial value problems, where stiff problems are an-
alyzed via a simplified Newton iteration in function space—replacing the
Picard iteration, which appears to be suitable only for nonstiff problems,

e Section 7.4.2 on ODE boundary value problems, where an adaptive multi-
level collocation method is worked out on the basis of an inexact Newton
method in function space,

e Section 8.1 on asymptotic mesh independence, where finite and infinite
dimensional Newton sequences are synoptically compared, and

e Section 8.3 on elliptic PDE boundary value problems, where inexact New-
ton multilevel finite element methods are presented in detail.

The algorithmic paradigm, given in Section 1.2.3 and used all over the whole
book, will certainly be useful in a much wider context, far beyond Newton
methods.

Unfortunately, after having finished this book, I will probably lose all my
scientific friends, since I missed to quote exactly that part of their work that
should have been quoted by all means. I cannot but apologize in advance,
hoping that some of them will maintain their friendship nevertheless. In fact,
as the literature on Newton methods is virtually unlimited, I decided to not
even attempt to screen or pretend to have screened all the relevant literature,
but to restrict the references essentially to those books and papers that are
cither intimately tied to affine invariance or have otherwise been taken as
direct input for the presentation herein. Even with this restriction the list is
still quite long.

At this point it is my pleasure to thank all those coworkers at ZIB, who have
particularly helped me with the preparation of this book. My first thanks
go to Rainer Roitzsch, without whose high motivation and deep TgX knowl-
edge this book could never have appeared. My immediate next thanks go
to Erlinda Kornig and Sigrid Wacker for their always friendly cooperation
over the long time that the manuscript has grown. Moreover, I am grateful
to Ulrich Nowak, Andreas Hohmann, Martin Weiser, and Anton Schiela for
their intensive computational assistance and invaluable help in improving the
quality of the manuscript.
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Nearly last, but certainly not least, I wish to thank Harry Yserentant, Chris-
tian Lubich, Matthias Heinkenschloss, and a number of anonymous reviewers
for valuable comments on a former draft. My final thanks go to Martin Peters
from Springer for his enduring support.

Berlin, February 2004

Peter Deuflhard
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Outline of Contents

This book is divided into eight chapters, a reference list, a software list, and
an index. After an elementary introduction in Chapter 1, it splits into two
parts: Part I, Chapter 2 to Chapter 5, on finite dimensional Newton methods
for algebraic equations, and Part II, Chapter 6 to Chapter 8, on extensions
to ordinary and partial differential equations. Exercises are added at the end
of each chapter.

Chapter 1. This introductory chapter starts from the historical root, New-
ton’s method for scalar equations (Section 1.1). The method can be derived
either algebraically, which leads to local Newton methods only (presented in
Chapter 2), or geometrically, which leads to global Newton methods via the
concept of the Newton path (see Chapter 3).

The next Section 1.2 contains the key to the basic understanding of this mono-
graph. First, four affine invariance classes are worked out, which represent the
four basic strands of this treatise:

o affine covariance, which leads to error norm controlled algorithms,

® gffine contravariance, which leads to residual norm controlled algorithms,
o affine conjugacy, which leads to energy norm controlled algorithms, and
o affine similarity, which may lead to time step controlled algorithms.

Second, the affine invariant local estimation of affine invariant Lipschitz con-
stants is set as the central paradigm for the construction of adaptive Newton
algorithms.

In Section 1.3, we give a roadmap of the large variety of Newton-type
methods—essentially fixing terms to be used throughout the book such as or-
dinary and simplified Newton method, Newton-like methods, inexact Newton
methods, quasi-Newton methods, Gauss-Newton methods, quasilinearization,
or inexact Newton multilevel methods. In Section 1.4, we briefly collect de-
tails about iterative linear solvers to be used as inner iterations within finite
dimensional inexact Newton algorithms; each affine invariance class is linked
with a special class of inner iterations. In view of function space oriented inex-
act Newton algorithms, we also revisit linear multigrid methods. Throughout
this section, we emphasize the role of adaptive error control.



2 Qutline

PART 1. The following Chapters 2 to 5 deal with finite dimensional Newton
methods for algebraic equations.

Chapter 2. This chapter deals with local Newton methods for the numerical
solution of systems of nonlinear equations with finite, possibly large dimen-
sion. The term ‘local’ refers to the situation that ‘sufficiently good’ initial
guesses of the solution are assumed to be at hand. Special attention is paid
to the issue of how to recognize, whether a given initial guess z° is ‘suffi-
ciently good’. Different affine invariant formulations give different answers
to this question, in theoretical terms as well as by virtue of the algorithmic
paradigm of Section 1.2.3. Problems of this structure are called ‘mildly non-
linear’; their computational complexity can be bounded a-priori in units of
the computational complexity of the corresponding linearized system.

As it turns out, different affine invariant Lipschitz conditions, which have
been introduced in Section 1.2.2, lead to different characterizations of local
convergence domains in terms of error oriented norms, residual norms, or
energy norms, which, in turn, give rise to corresponding variants of Newton
algorithms. We give three different, strictly affine invariant convergence anal-
yses for the cases of affine covariant (error oriented) Newton methods (Sec-
tion 2.1), affine contravariant (residual based) Newton methods (Section 2.2),
and affine conjugate Newton methods for convex optimization (Section 2.3).
Details are worked out for ordinary Newton algorithms, simplified Newton al-
gorithms, and inexact Newton algorithms—synoptically for each of the three
affine invariance classes. Moreover, affine covariance is naturally associated
with Broyden’s ‘good’ quasi-Newton method, whereas affine contravariance
corresponds to Broyden’s ‘bad’ quasi-Newton method.

Affine invariant globalization, which means global extension of the conver-
gence domains of local Newton methods in the affine invariant frame, is pos-
sible along several lines:

e global Newton methods with damping strategy—see Chapter 3,
e parameter continuation methods—see Chapter 5,

» pseudo-transient continuation methods—see Section 6.4.

Chapter 3. This chapter deals with global Newton methods for systems of
nonlinear equations with finite, possibly large dimension. The term ‘global’
refers to the situation that here, in contrast to the preceding chapter, ‘suffi-
ciently good’ initial guesses of the solution are no longer assumed. Problems
of this structure are called ‘highly nonlinear’; their computational complexity
depends on topological details of Newton paths associated with the nonlinear
mapping and can typically not be bounded a-priori.
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In Section 3.1 we survey globalization concepts such as

e steepest descent methods,

e trust region methods,

o the Levenberg-Marquardt method, and

o the Newton method with damping strategy.

In Section 3.1.4, a rather general geometric approach is taken: the idea is
to derive a globalization concept without a pre-occupation to any iterative
method, just starting from the requirement of affine covariance as a ‘first
principle’. Surprisingly, this general approach leads to a topological derivation
of Newton’s method with damping strategy via Newton paths.

In order to accept or reject a new iterate, monotonicity tests are applied.
We study different such tests, according to different affine invariance require-
ments:

¢ the most popular residual monotonicity test, which is related to affine con-
travariance (Section 3.2),

e the error oriented so-called natural monotonicity test, which is related to
affine covariance (Section 3.3), and

e the convex functional test as the natural requirement in convex optimiza-
tion, which reflects affine conjugacy (Section 3.4).

For each of these three affine invariance classes, adaptive trust region strate-
gies are designed in view of an efficient choice of damping factors in Newton’s
method. They are all based on the paradigm of Section 1.2.3. On a theoretical
basis, details of algorithmic realization in combination with either direct or
tterative linear solvers are worked out. As it turns out, an efficient determina-
tion of the steplength factor in global inexact Newton methods is intimately
linked with the accuracy matching for affine invariant combinations of inner
and outer iteration.

Chapter 4. This chapter deals with both local and global Gauss-Newton
methods for nonlinear least squares problems in finite dimension—a method,
which attacks the solution of the nonlinear least squares problem by solving a
sequence of linear least squares problems. Affine invariance of both theory and
algorithms will once again play a role, here restricted to affine contravariance
and affine covariance. The theoretical treatment requires considerably more
sophistication than in the simpler case of Newton methods for nonlinear
equations.

In order to lay some basis, unconstrained and equality constrained linear
least squares problems are first discussed in Section 4.1, introducing the use-
ful calculus of generalized inverses. In Section 4.2, an affine contravariant
convergence analysis of Gauss-Newton methods is given and worked out in
the direction of residual based algorithms. Local convergence turns out to
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be only guaranteed for ‘small residual’ problems, which can be characterized
in theoretical and algorithmic terms. Local and global convergence analysis
as well as adaptive trust region strategies rely on some projected residual
monotonicity test. Both unconstrained and separable nonlinear least squares
problems are treated.

In the following Section 4.3, local convergence of error oriented Gauss-Newton
methods is studied in affine covariant terms; again, Gauss-Newton methods
are seen to exhibit guaranteed convergence only for a restricted problem class,
named ‘adequate’ nonlinear least squares problems, since they are seen to be
adequate in terms of the underlying statistical problem formulation. The
globalization of these methods is done via the construction of two topological
paths: the local and the global Gauss-Newton path. In the special case of
nonlinear equations, the two paths coincide to one path, the Newton path.
On this theoretical basis, adaptive trust region strategies (including rank
strategies) combined with a natural extension of the natural monotonicity
test are presented in detail for unconstrained, for separable, and—in contrast
to the residual based approach—also for nonlinearly constrained nonlinear
least squares problems. Finally, in Section 4.4, we study underdetermined
nonlinear systems. In this case, a geodetic Gauss-Newton path exists generi-
cally and can be exploited to construct a quasi-Gauss-Newton algorithm and
a corresponding adaptive trust region method.

Chapter 5. This chapter discusses the numerical solution of parameter de-
pendent systems of nonlinear equations, which is the basis for parameter
studies in systems analysis and systems design as well as for the globaliza-
tion of local Newton methods. The key concept behind the approach is the
(possible) existence of a homotopy path with respect to the selected param-
eter. In order to follow such a path, we here advocate discrete continuation
methods, which consist of two essential parts:

® 3 prediction method, which, from given points on the homotopy path, pro-
duces some ‘new’ point assumed to be ‘sufficiently close’ to the homotopy
path,

e an iterative correction method, which, from a given starting point close to,
but not on the homotopy path, supplies some point on the homotopy path.

For the prediction step, classical or tangent continuation are the canonical
choices. Needless to say that, for the iterative correction steps, we here con-
centrate on local Newton and (underdetermined) Gauss-Newton methods.
Since the homotopy path is a mathematical object in the domain space of
the nonlinear mapping, we only present the affine covariant approach.

In Section 5.1, we derive an adaptive Newton continuation algorithm with
the ordinary Newton method as correction; this algorithm terminates locally
in the presence of critical points including turning points. In order to follow
the path beyond turning points, a quasi-Gauss-Newton continuation algo-
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rithm is worked out in Section 5.2, based on the preceding Section 4.4. This
algorithm still terminates in the neighborhood of any higher order critical
point. In order to overcome such points as well, we exemplify a scheme to
construct augmented systems, whose solutions are just selected critical points
of higher order—see Section 5.3. This scheme is an appropriate combination
of Lyapunov-Schmidt reduction and topological universal unfolding. Details
of numerical realization are only worked out for the computation of diagrams
including simple bifurcation points.

PART II. The following Chapters 6 to 8 deal predominantly with infinite
dimensional, i.e., function space oriented Newton methods. The selected top-
ics are stiff initial value problems for ordinary differential equations (ODEs)
and boundary value problems for ordinary and partial differential equations
(PDEs).

Chapter 6. This chapter deals with stiff initial value problems for ODEs.
The discretization of such problems is known to involve the solution of non-
linear systems per each discretization step—in one way or the other.

In Section 6.1, the contractivity theory for linear ODEs is revisited in terms
of affine similarity. Based on an affine similar convergence theory for a sim-
plified Newton method in function space, a nonlinear contractivity theory for
stiff ODE problems is derived in Section 6.2, which is quite different from
the theory given in usual textbooks on the topic. The key idea is to replace
the Picard iteration in function space, known as a tool to show uniqueness in
nonstiff initial value problems, by a simplified Newton iteration in function
space to characterize stiff initial value problems. From this point of view, lin-
early implicit one-step methods appear as direct realizations of the simplified
Newton iteration in function space. In Section 6.3, exactly the same theo-
retical characterization is shown to apply also to implicit one-step methods,
which require the solution of a nonlinear system by some finite dimensional
Newton-type method at each discretization step.

Finally, in a deliberately longer Section 6.4, we discuss pseudo-transient con-
tinuation algorithms, whereby steady state problems are solved via stiff in-
tegration. This type of algorithm is particularly useful, when the Jacobian
matrix is singular due to hidden dynamical invariants (such as mass con-
servation). The (nearly). affine similar theoretical characterization permits
the derivation of an adaptive (pseudo-)time step strategy and an accuracy
matching strategy for a residual based inexact variant of the algorithm.

Chapter 7. In this chapter, we consider nonlinear two-point boundary value
problems for ODEs. The presentation and notation is closely related to Chap-
ter 8 in the textbook [71]. Algorithimns for the solution of such problems can be
grouped into two approaches: initial value methods such as multiple shooting
and global discretization methods such as collocation. Historically, affine co-
variant Newton methods have first been applied to this problem class—with
significant success.



