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Nomenclature

Acronyms

AC Alternating Current

Al Artificial Intelligence

APU Auxiliary Power Unit

AS Anode-Supported

BoP Balance of Plant

CHP Combined Heat and Power
CPO Catalytic Partial Oxidation
CPU Central Processing Unit

CS Cold-Start

CS2wWU Cold-Start to Warmed-Up
DC Direct Current

DIR Direct Internal Reforming
DOD Depth of Discharge

DoE Design of Experiment

EIS Electrochemical Impedance Spectroscopy
ES Electrolyte-Supported

EU European Union

FC Fuel Cell

FCH-JU Fuel Cells and Hydrogen Joint Undertaking
FCS Fuel Cell System

FDI Fault Detection and Isolation
FSM Fault Signature Matrix

FTA Fault Tree Analysis

GT Gas Turbine

ICE Internal Combustion Engine
IEA International Energy Agency
ISM Integrated Stack Module

LS Least Squares

vii



viii Nomenclature

LSM Strontium-Doped Lanthanum Manganite
MIMO Multi-Input Multi-Output
MLPFF Multi Layer Perceptron Feed Forward

MLR Multi Linear Regression

MSE Mean Squared Error

NN Neural Network

ODE Ordinary Differential Equation
PEM Proton Exchange Membrane
PI Proportional Integral

PID Proportional Integral Derivative
PSO Particle Swarm Optimization
RBF Radial Basis Function

RC Resistor-Capacitor

REF Prereformer Conversion Factor
RNN Recurrent Neural Network
RUL Remaining Useful Life

SI Splitting Index

SOC State of Charge

SOFC Solid Oxide Fuel Cell

SVM Support Vector Machine

TES Thermal Storage System

WU Warmed-Up

YSZ Yttria Stabilized Zirconia

Roman Symbols

A Area (mz)
Aq Heat Transfer Area (mz)
ASR Area Specific Resistance (A cm?)
AU Air Utilization (-)
c Specific Heat Capacity (J kg~' K™)
C Heat Capacity (J K™
Ce Heat Capacity of Cold Fluid (J Kh
C. Thermal Mass Flow of Cold Fluid (W K™")
Cr Thermal Mass Flow of Hot Fluid (W K1)
Gy Heat Capacity of Hot Fluid (J K™
Cp Specific Heat Capacity at Constant Pressure (J kg™' K™ ")
Dy, Equivalent Diameter (m)
E Enthalpic Power Flow (W)
Eq Electrical Power Flow (W)
ExNernst Nernst Ideal Potential (V)

F Faraday Constant (C mol™")



Nomenclature

G Gibbs Free Energy (J mol™")

h Specific Enthalpy (J mol™")

h Convective Heat Transfer Coefficient (W m 2 K™ ')
H Heat Convective Coefficient (W m 2 K™")
Aen Channel High (m)

n Specific Enthalpy of Formation (J mol™!)
HHV Higher Heating Value (J kg™

l Current (A)

J Current Density (A cm™2)

J Average Current Density (A cm ™)

Jo Exchange Current Density (A cm?)
Jos Anode Limit Current Density (A cm™?)
Jes Cathode Limit Current Density (A cm ?)
k Thermal Conductivity (W m™" K™

[ Length (m)

LHV Lower Heating Value (J kg™")

m Mass (kg)

7 Mass Flow (kg sh

n Molar Flow (mol s™")

N Computational Elements (-)

e Number of electrons (-)

N, Nusselt Number (-)

p Pressure (Pa)

P Power (W)

Paii Battery Power (W)

Pep Compressor Power (W)

P Gross Power (W)

Phaas Heat Power (W)

Preatdwell Average Heat Power Demand (W)
Pload Power Demand (W)

Piat Net Power (W)

[0} Heat Flow (W)

r Reaction Rate (mol s™')

R Universal Gas Constant J m™' K™)
R, Battery Internal Resistance ()

t Time (s)

T Temperature (K)

Uy Fuel Utilization (-)

Vv Voltage (V)

Vo Battery Open Circuit Voltage (V)

Weh Channel Width (m)

W Mechanical Power (W)

X Molar Fraction (%)



X

Greek Symbols

a Charge Transfer Coefficients (-)
p Compressor Ratio (-)
A Change

n Efficiency (-)

A Excess of Air (-)

U Micro

& Fault Magnitude Coeflicient
p Mass Density (kg m °)
o Tonic/Electronic Conductivity (S cm™)
T Relaxation Time (s)

Q Control Volume (m3)
Footers

a Air

Act Activation

an Anode

aph Air Preheater

ca Cathode

cer Ceramic

ch Channel

cm Compressor Motor
Conc Concentration

cond Conductive

conv Convective

cp Compressor

eff Effective

el Electrolyte

eq Equivalent

ext External

f Fuel

front Frontal

furnace Furnace

HE Heat Exchanger

in Inlet

int Interconnect

max Maximum

min Minimum

Ohm Ohmic

out Outlet

0X Oxidation reaction

Pb Postburner

Nomenclature



Nomenclature

pre Prereformer

pre Preheater

prod Product

react Reactant

ref Reforming reaction

s Solid

shift Water-gas shift reaction

stack Stack
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