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. FOREWORD

The Methods of Experimental Physics is the outgrowth of a discussion,
several years ago, of the need in the American literature of physics for a
handbook type volume giving the experimental physicist a convenient
guide in his work. In the course of this discussion the conclusion was
reached that, with the present development of physics, the material
would have to be subdivided into several volumes, each volume covering
a sufficiently large field without too much overlapping. The scope and
basic philosophies of this publishing venture were outlined in the original
editorial policy statement:

““The experimental physicist—the person for whom this book should be
written—is normally a specialist, working in a relatively narrow domain.
He is presumed to know his own specialty very well. In the course of his
work, however, he is often confronted with the necessity of using methods
borrowed from neighboring fields, with which he is less familiar. In such
cases he may have to make a literature search or ask advice from a
specialist in the neighboring field. The existence of a concise presentation
of the most important methods used in experimental physics would
considerably simplify the task.

“The methods used may be purely experimental, but very often they
are partly theoretical or computational. They may be qualitative, or may
require the ultimate in accuracy. In an unfamiliar field, the experi-
menter will need a guide to the ways and means best adapted to his own
investigation.

“Thus the book should be a concise, well illustrated presentation of
the most important methods, or general principles, needed by the
experimenter, complete with basic references for further reading. Indi-
cation of limitations of both applicability and accuracy is an important
part of the presentation. Information about the interpretation of experi-
ments, about the evaluation of errors, and about the validity of approxi-
mations should also be given. The book should not be merely a descrip-
tion of laboratory techniques, nor should it be a catalog of instruments.

“These volumes should be written so as to be of value to all research
workers who use physical methods. Finally, the volumes should be
organized in such a way that they will provide essential tools for graduate
students in physics.”

Having outlined the policy and scope of this work, the next task was
to find editors who could bring the series to fruitful completion. We were
successful in securing the collaboration of outstanding scientists to serve
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viii FOREWORD

as editors for the volumes, and it is a pleasure to be able to list their
names on the title page of this first volume of the series.

It remains to be judged by the reader how far we have achieved the
goal set in our editorial policy. The volume editors and I sincerely hope
that we have achieved it to a reasonable extent. Together with them I
would like to invite the opinions of all our colleagues to let us know what
omissions there are and what errors there may be, so that in future
editions we may correct them. Uppermost in our minds has been the
desire to provide the research worker and the graduate student with a
good and useful tool to aid in their research, because we firmly believe
that the conception of emphasizing the method, with a concurrent neglect
of gadgetry, is an untried idea in the American literature of physics.

Finally, it is my pleasant duty to thank publicly all those who helped
in the realization of these goals. The officials and staff of Academic
Press Inc. were tireless in ironing out difficulties and providing a stimu-
lating collaboration. The greatest part of the work on this first volume
was on the shoulders of Dr. Immanuel Estermann; no amount of thanks
can express my appreciation for the devotion and knowledge which he
brought to the task. Editorial details on the home front were handled
skillfully by Mrs. Claire Marton. Last, and most important, I extend my
best thanks to the authors, whose contributions have created this volume.

L. MARTON

Washington, D.C.
February, 1959



PREFACE TO VOLUME I

The rational subdivision of the science of physics into components is
becoming increasingly difficult. In addition to the “classical” fields, such
as mechanics, heat, sound, light, electricity, and magnetism, there have
developed in the last decades a number of functional specialties, such as
nuclear and solid state physics, which cut across the classical subdivisions
and have added their own experimental methods for the pursuit of their
objectives. In the determination of the material to be included in this
volume, the editor was guided by the following considerations: The con-
tent should be of interest to physicists working in all the specialties,
and beyond that, to researchers in other scientific fields for which physical
methods are becoming more and more important. On the other hand,
methods and techniques developed primarily for the various functional
branches of physics have been reserved for the other volumes in the series.

It is obvious that the volume title “Classical Methods” is not to be
interpreted as an antonym to modern methods. The term refers to those
methods which are related to the general subdivisions of classical physics,
but the editor and the authors have endeavored to include the most recent
developments in experimental technology and theoretical justification,
leaving out those techniques which have only historical interest. It was
not intended to produce a ‘“cook book’” which gives a detailed description
of favorite recipes but rather a ““guide book”” which points out the advan-
tages, capabilities and limitations of the various methods and thus enables
the user to select those which appear to be appropriate for his particular
problem. Numerous references leading to more detailed descriptions of the
different techniques are expected to provide additional information where
needed. Methods and techniques customarily taught in elementary
physics courses are either passed over or treated very briefly.

Completing a measurement is only one part of a research objective; the
correct interpretation of the result is at least of equal importance. We
have, therefore, included relatively detailed discussions of the theoretical
significance of the various concepts and their relationships to the quantities
that are actually measured. Thus a relatively large portion of this volume
contains theoretical material which the authors felt to be necessary for the
precise clarification of the concepts and for the proper interpretation of
the measurements.

While the arrangement of the various parts and chapters follows a uni-
form style, no attempt has been made to suppress the individuality of the
authors. Each part or chapter represents the approach of a different per-
son to a common problem, Some authors are putting more emphasis on the
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X PREFACE TO VOLUME I

experimental, others more on the theoretical side of their subject. It is
the editor’s hope that this divergence of attitude, which extends even
to the preference of different systems of units by different authors, will
make the book more readable and enjoyable.

The volume editor wishes to express his gratitude to the general editor
and to the authors for their excellent cooperation and to the publisher and
his staff for their patient assistance in coping with the many problems con-
nected with the preparation of this volume.

I. ESTERMANN
February, 1959
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1. EVALUATION OF MEASUREMENT*

1.1. General Rules

In a concise expression of the results of the measurement of a physical
quantity, three pieces of information should be given: a number, a numer-
ical statement of reliability, and an appropriate set of units.f The number
is generally an estimate expressed in a finite set of digits (the exceptions
are numbers which are exact by arbitrary definition, or mathematical
constants such as the base of natural logarithms) reflecting the limited
accuracy of physical measurement. The statement of reliability is usually
written as plus or minus one, or at most two digits in units of the last digit
of the number, together with a sufficient explanation to allow interpreta-
tion. In particular, one should state how many measurements were em-
ployed in the determination of the number and of its reliability. As will
be seen below, this is of great value in the critical comparison of the results
of different experiments, and in their combination with results of previous
work. The number of digits that can be read is indicated by the smallest
scale division, the least count of an instrument. Usually, one additional
digit can be estimated between scale divisions. No more—and no less—
digits should be recorded than can be read reproducibly.

To remove ambiguities, a standard form may be used for the recording
of data: the decimal point is put just after the first nonzero digit, and the
number is multiplied by the appropriate power of ten. Every digit is then
understood to be significant. The magnitude of error is automatically
indicated by the number of significant digits. The final result will gen-
erally have one more significant digit than the individual readings. This
procedure implies that one should not round off readings. Any round-off
increases the error. In the course of computation, round-off may be
inevitable. A brief discussion of errors so introduced, with further refer-
ences, is given in Chapter 1.6.

For the estimation of the best value of the desired quantity and of the
significance of the result, statistical techniques are used. The terms “best”’
and “significant”” should be understood in a technical sense: i.e., “best”
and ‘“significant” according to some statistical criterion. The criteria
applied depend on assumptions which may or may not be true: attention
should be paid to their validity. In the following, only a prescription of the
techniques can be given. For this reason, a word of warning is in order:

T Units are discussed in Part 2 of this volume.

* Part 1 is by Sidney Reed.




2 1. EVALUATION OF MEASUREMENT

these techniques, properly used, can improve the understanding of the
results and the judgment of their worth—but they are not a substitute for
thought.* It should be emphasized that work in certain fields, e.g., cosmic
ray or high energy physics, requires more complete attention to statistical
techniques in the planning and interpretation of experiments than can be
discussed here.? The assistance of a statistician in such work will often be
indispensable.

1.2. Errors

1.2.1. Systematic Errors, Accuracy

Statements about reliability of a measurement, require assessment of
the accuracy and of the precision of the work. Accuracy implies precision
and, beyond that, freedom from what long usage has termed systematic
errors. Examples best indicate the nature of systematic errors: (1) The
torsion constant of a quartz fiber depends on the weight suspended by it
(Bearden). This was overlooked in the course of the work aimed at the
determination of the charge of the electron by Millikan. Consequently
the value of air viscosity, which was used in this determination and which
in turn was obtained using a quartz fiber to provide torque, probably
included a systematic error because the suspended mass used in the
experiment differed from that with which the torsion constant was
determined.® (2) Miller performed a long series of experiments at Mount
Wilson to detect a dependence of light speed on the direction of the earth’s
motion. A small dependence seemed to be present. A recent analysis of
his data indicated a probable correlation of his results with heating of the
building due to sunlight.* Here the systematic error was periodic with a
long period. (3) A systematic misinterpretation which is not a gross
mistake may be termed a systematic error. Michelson apparently omitted
to correct some of his work on the velocity of light for the difference
between group and phase velocity.?

In general, systematic errors are definite functions of experimental

! Further discussion and references are given by E. B. Wilson, Jr., “ An Introduction
to Scientific Research.”” McGraw-Hill, New York, 1952. Chapters on errors of physical
measurement are given also by H. Cramer, “Elements of the Theory of Probability
and its Applications.” Wiley, New York, 1955; and in N. Arley and K. R. Buch,
“Probability and Statistics.” Wiley, New York, 1950.

% See, for example, L. Jdnossy, “Cosmic Rays.” Oxford Univ. Press, London and
New York, 1953.

*R. T. Birge, Nuovo cimento 6, Suppl. No. 1, 44 (1957).

*R.S. Shankland, 8. W. McCuskey, F. C. Leone, and G. Kuerti, Revs. Modern Phys.
27, 167 (1955). Miller was aware of this possibility, but could not pin it down.



1.3. STATISTICAL METHODS 3

method, instruments, or environmental conditions. If detected they can
usually be corrected. Sometimes a single correction will be adequate
for the entire work and can be applied at the end. The caliber of investi-
gators cited in the above examples should be a warning that constant, or
slowly varying systematic errors are hard to detect. The crucial test is the
comparison of measurements of the same quantity obtained from different
experiments, using different principles.

1.2.2. Accidental Errors, Precision

Precision implies close reproducibility of the results of successive in-
dividual measurements. It is assumed that, in general, there is a variation
from measurement to measurement. This scatter of data is usually con-
sidered due to accidental errors; it is imagined that the experiment is
aimed at a constant quantity, superimposed on which there is a random
sum of small effects, independent of each other and of the quantity
itself, and which are responsible for the variation of the results. Absence
of variation is not necessarily an indication of precision; it may be due
simply to an excessively large least count of the instrument used (see
Section 1.4.1). Indefinite refinement of scale, which is possible in imagina-
tion, is limited by the fluctuation phenomena of microphysics. The ulti-
mate degree of attainable precision is set by the probabilistic features of
these fluctuations.?

1.3. Statistical Methods

To analyze accidental errors, the actual data are imagined to be a
random selection, one for each measurement, of values from a large refer-
ence distribution which could be generated by infinite repetition of the
experiment. In statistical terms, this is a finite sample from a “parent
distribution’ (p.d.). For reasons of mathematical convenience, it is usual
to assume that the p.d. can be approximated satisfactorily by an analytic
function (p.d.f.) having two or three parameters. Our finite data sample
permits, at most, to estimate the p.d.f. parameters representing the true
value and the precision of the measurement.

In most cases, a reasonable, explicit assumption of a definite form of the
p.d.f. is desirable. Which form should be taken depends on a preliminary
assessment of the probabilistic features of the experiment. If the errors are
accidental in the sense described in Section 1.2.2 above, a normal (see

5 R. B. Barnes and 8. Silverman, Revs. Modern Phys. 6, 162 (1934). A recent sum-
mary is given by C. W. McCrombie, Repts. Progr. in Phys. 16, 266 (1953).



4 1. EVALUATION OF MEASUREMENT

Section 1.3.1) distribution function (n.d.f.) is appropriate. If the experi-
ment is directly concerned with probabilistic phenomena, e.g., counting
experiments in nuclear physics, the Poisson or some other discrete proba-
bility distribution function may be chosen. In this case the measurements
are generally indirect® (see Chapter 1.5).

To obtain an estimate of the best value one does not need to assume
any particular p.d.f.; e.g., an estimation using least squares can be made.”
A sharp quantitative statement of the statistical significance of a differ-
ence between two “best” estimates of the same quantity cannot be made,
however, without assuming a definite form for the p.d.f.

1.3.1. Mean Value and Variance

The fraction of readings dN (z)/N drawn from the p.d.f. f(z) lying in
the range between x and z + dz is

dN (x)/N = f(x) dz. (1.3.1)

The function f(z) is normalized: [f(z) dz = 1. The average of any func-
tion g(z), denoted by <g(z)>, is defined by <g(z)> = Jg(@)f(z) dx.
The range of integration may, for mathematical convenience, extend in
both directions to infinity. Of special importance are the average of z
called the mean

<z> = [xf(x) dx (1.3.2)
and the average of (x — <x>)? called the dispersion or variance of z
o¥(x) = [(x — <x>)%f(z) dx. (1.3.3)

The square root of the variance o(z) is called standard deviation or some-
times standard error. It is a measure of the spread of the data and thus
of the precision. An important example of a p.d.f., often assumed to apply
to accidental errors, is the Gaussian or normal distribution (n.d.f.):

f1@) = [v/2n0%(x)]lexp[— (z — <x>)%/20%(x)] (1.3.4)

characterized by two parameters, the mean <z> and the variance
a*(z). N measurements ; allow the formation of the sample mean

N
i = N—xz x,- (1.3.5)
i=1
and the sample variance
N
$2(x) = (N — 1) z (z: — B)2. (1.3.6)
i=1

¢ M. Annis, W. Cheston, and H. Primakoff, Revs. Modern Phys. 25, 818 (1953).
" E. R. Cohen, Revs. Modern Phys. 25, 709 (1953).



1.3. STATISTICAL METHODS 5

If our sample is regarded as one of many equally reliable, independent
samples of N measurements each, the means of such samples will fluc-
tuate. The variance of the means, ¢2(Z) is related to the variance of
individual measurements by

0%(Z) = o*x) - N7L.

The mean has the property of being the value of a parameter a which
minimizes ¥ ;(z; — a)% On the grounds of consistency, one expects that
in some sense Z converges to <z> as N — «.* For computation, it is
useful to subtract a constant A of the order of size of x;, so that

N

N-1 2 (2 — A) (1.3.7)

i=1

zZ— A

I

and s¥(x)

Il

(N — 1)~ [i (@— A= N@— 4)2]. (138

i=1
1.3.2. Statistical Control of Measurements

The use of any p.d. implies that the data may be regarded as drawn
at random from it. There are statistical tests for this implication,! but
in the case of data scatter because of accidental errors, a rough “control
chart” can assist in detecting systematic departures which are functions
of time. Such a chart may be made by plotting, on the abscissa, the order
(in time) of the reading, and on the ordinate, the reading itself. If there
is previous information on the scatter of the data using the same instru-
ment under similar conditions, so that o(z) is known, one can, at least
tentatively, draw lines on the chart at # + 3¢ which should, if the data
are in control, bracket practically all the points. It is quite valuable to
have such a chart associated with a precise instrument.

If no previous information is available, one should take a number of
points, draw lines at Z + 3s and continue for a few more readings in order
to see whether the additional data fall between these lines. If it appears
that randomness is a fair assumption, one can use the function “chi-
square”’® to test the fit of an assumed p.d.f. Chi-square, or x2, is defined as

(observed value — value expected from p.d.f.)?
value expected from p.d.f.

x% = sum of

* This is so in the technical sense of convergence in probability; see, e.g., Cramer,
reference 1.

8 Examples of the use of x2 are given by Wilson, reference 1, p. 200; by Arley and
Buch, reference 1, p. 209. A critical discussion is given by W. G. Cochran, Ann. Math.
Statistics 23, 315 (1952).



6 1. EVALUATION OF MEASUREMENT

and is tabulated as function of the number of degrees of freedom. Here
the number of degrees of freedom equals the number of terms in the sum
minus one plus the number of p.d.f. parameters which must be estimated
from the data; in the case of a n.d.f., the number of degrees of freedom is
the number of terms minus three. It is generally necessary to group the
observed data and the corresponding values from the p.d.f. into cells.8
For moderate numbers of readings, say 20 or so, x* will only show sub-
stantial discrepancies between the data and the proposed p.d.f. From the
table of x* one can find the probability that a value of x? at least as large
as that computed could have arisen by chance. If the computed value
has a low probability, this is a signal to look for systematic errors.?

1.4. Direct Measurements

It is useful to distinguish between direct measurements, such as can
be made of length, time, or electrical current; and indirect measurements,
in which the quantity in question can be calculated from measurement of
other quantities. In the latter case the law of connection between the
quantities measured and sought may also be in question. In such a case,
one has first to decide whether the proposed relation holds for any values
of the quantities (establishment of the law of connection), and if 80, to
make as good an estimate as possible of the quantity desired.® In the case
of direct measurements only the latter problem needs to be solved. This
simple situation will be discussed first.?® There are several cases, depend-
ing on what information is available at the start.

1.4.1. Errors of Direct Measurements

If one has information at the start of the experiment regarding the
variance of readings of the measuring instrument under similar conditions,
the following procedure can be employed: One can draw up a control
chart, using the previous o(z) together with the mean % of a short pre-

* A brief table (I) of x2is given in the Appendix to this Part. More extensive tables
are readily found, e.g. in recent editions of the “ Handbook of Chemistry and Physies,”
39th ed. Chemical Rubber, Cleveland, Ohio, 1957-1958. Most tables are abridged
versions of those due to R. A. Fisher and F. Yates ‘“Statistical Tables for Biological,
Agricultural and Medical Research.” Oliver and Boyd, Edinburgh and London, 1953.

19 A valuable, readable discussion is given by W. E. Deming and R. T. Birge, Revs.
Modern Phys. 6, 119 (1934).
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liminary run. If subsequent readings appear to be in statistical control, ie.
if the points fall between the lines at & + 30, one can terminate the process
at a definite number of readings which depends on the precision desired.
One can then say that the most likely value of <z> is given by the mean
&, and that the reliability of this estimate is such that the probability is one-
half that the interval between Z — 0.67¢/+4/N and & + 0.670/+/N con-
tains <z >. The precision increases with N in the sense that the interval
having a definite probability of containing <> narrows proportional to
N-%* In this case, the interval length is sharply defined for fixed N and
probability. But this is only so if o(2) is known a priori, or if the situation
discussed in one of the next two cases prevails:

(a) If there is a long string of readings (several hundred) at hand, all
taken, as far as can be judged, under statistical control, one can from this
data alone determine s(x) as a good approximation to ¢(x). One can then
proceed as described in the preceding paragraph; the influence of previous
data will be small.

(b) In most practical situations, one has probably only small numbers
of readings. The case just mentioned can sometimes be approached by
combining a reasonable number of readings with previously obtained
data. To do this, one regards these small sets of data as drawn at random
from a set of n.d.f.’s having possibly different means, but the same o. It
is here assumed that the previous work is summarized into m sets and
that the numbers of measurements in each set, ni, . . . 7, and the
corresponding sample variances s, . . . s, are available. An estimate
of the value of ¢? is then:

(@) = {3t = D521}/ = m) (L4.1)

=1

and its dispersion can be estimated as o(s) =~ o(2)/+/2(N — m). In such
cases the data of an additional short run should be combined with
the preceding data in estimating the new over-all variance o*(xz) by
simply adding the appropriate values of (#m+1 — 1)sk,,. The standard
deviation so obtained applies now to any of the samples, and as thenumber
of these increases, provided the hypothesis of the data being drawn from a
common population with a given value of o is well founded, the value
of o will become more and more reliable.

In the cases just described, it is important to know whether or not it is
reasonable to use all or only some of the different sets of data. A way of

* An interval of this type is called a confidence interval. It should be distinguished

from a folerance interval which will contain a definite fraction of the population, e.g.,
a single observation. (See Arley and Buch, reference 1, p. 168.)



