EUGENE P. WIGNER

GROUP THEORY

AND ITS APPLICATION TO THE QUANTUM MECHANICS OF ATOMIC SPECTRA

GROUP THEORY

AND ITS APPLICATION TO THE QUANTUM MECHANICS OF ATOMIC SPECTRA

EUGENE P. WIGNER

Palmer Physical Laboratory, Princeton University
Princeton, New Jersey

TRANSLATED FROM THE GERMAN BY

J. J. GRIFFIN

University of California, Los Alamos Scientific Laboratory
Los Alamos, New Mexico

EXPANDED, AND IMPROVED EDITION

1959

ACADEMIC PRESS

NEW YORK AND LONDON

Author's Preface

The purpose of this book is to describe the application of group theoretical methods to problems of quantum mechanics with specific reference to atomic spectra. The actual solution of quantum mechanical equations is, in general, so difficult that one obtains by direct calculations only crude approximations to the real solutions. It is gratifying, therefore, that a large part of the relevant results can be deduced by considering the fundamental symmetry operations.

When the original German version was first published, in 1931, there was a great reluctance among physicists toward accepting group theoretical arguments and the group theoretical point of view. It pleases the author that this reluctance has virtually vanished in the meantime and that, in fact, the younger generation does not understand the causes and the basis for this reluctance. Of the older generation it was probably M. von Laue who first recognized the significance of group theory as the natural tool with which to obtain a first orientation in problems of quantum mechanics. Von Laue's encouragement of both publisher and author contributed significantly to bringing this book into existence. I like to recall his question as to which results derived in the present volume I considered most important. My answer was that the explanation of Laporte's rule (the concept of parity) and the quantum theory of the vector addition model appeared to me most significant. Since that time, I have come to agree with his answer that the recognition that almost all rules of spectroscopy follow from the symmetry of the problem is the most remarkable result.

Three new chapters have been added in translation. The second half of Chapter 24 reports on the work of Racah and of his followers. Chapter 24 of the German edition now appears as Chapter 25. Chapter 26 deals with time inversion, a symmetry operation which had not yet been recognized at the time the German edition was written. The contents of the last part of this chapter, as well as that of Chapter 27, have not appeared before in print. While Chapter 27 appears at the end of the book for editorial reasons, the reader may be well advised to glance at it when studying, in Chapters 17 and 24, the relevant concepts. The other chapters represent the translation of Dr. J. J. Griffin, to whom the author is greatly indebted for his ready acceptance of several suggestions and his generally cooperative attitude. He also converted the left-handed coordinate system originally used to a right-handed system and added an Appendix on notations.

The character of the book-its explicitness and its restriction to one subject only, viz. the quantum mechanics of atomic spectra-has not been changed. Its principal results were contained in articles first published in the Zeitschrift für Physik in 1926 and early 1927. The initial stimulus for these . articles was given by the investigations of Heisenberg and Dirac on the quantum theory of assemblies of identical particles. Weyl delivered lectures in Zürich on related subjects during the academic year 1927-1928. These were later expanded into his well-known book.

When it became known that the German edition was being translated, many additions were suggested. It is regrettable that most of these could not be followed without substantially changing the outlook and also the size of the volume. Author and translator nevertheless are grateful for these suggestions which were very encouraging. The author also wishes to thank his colleagues for many stimulating discussions on the role of group theory in quantum mechanics as well as on more specific subjects. He wishes to record his deep indebtedness to Drs. Bargmann, Michel, Wightman, and, last but

not least. J. von Neumann.

E. P. WIGNER

Princeton, New Jersey February, 1959

Translator's Preface

This translation was initiated while the translator was a graduate student at Princeton University. It was motivated by the lack of a good English work on the subject of group theory from the physicist's point of view. Since that time, several books have been published in English which deal with group theory in quantum mechanics. Still, it is perhaps a reasonable hope that this translation will facilitate the introduction of English-speaking

physicists to the use of group theory in modern physics.

The book is an interlacing of physics and mathematics. The first three chapters discuss the elements of linear vector theory. The second three deal more specifically with the rudiments of quantum mechanics itself. Chapters 7 through 16 are again mathematical, although much of the material covered should be familiar from an elementary course in quantum theory. Chapters 17 through 23 are specifically concerned with atomic spectra, as is Chapter 25. The remaining chapters are additions to the German text; they discuss topics which have been developed since the original publication of this book: the recoupling (Racah) coefficients, the time inversion operation, and the classical interpretations of the coefficients.

Various readers may wish to utilize the book differently. Those who are interested specifically in the mathematics of group theory might skim over the chapters dealing with quantum physics. Others might choose to deemphasize the mathematics, touching Chapters 7, 9, 10, 13, and 14 lightly for background and devoting more attention to the subsequent chapters. Students of quantum mechanics and physicists who prefer familiar material interwoven with the less familiar will probably apply a more even distribution

of emphasis.

The translator would like to express his gratitude to Professor E. P. Wigner for encouraging and guiding the task, to Drs. Robert Johnston and John McHale who suggested various improvements in the text, and to Mrs. Marjorie Dresback whose secretarial assistance was most valuable.

J. J. GRIFFIN

Los Alamos, New Mexico February, 1959

Copyright ©, 1959, by Academic Press Inc.

ALL RIGHTS RESERVED

NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PROTOSTAT, MICROFILM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS.

> ACADEMIC PRESS INC. 111 FIFTH AVENUE NEW YORK 3, N. Y.

United Kingdom Edition
Published by
ACADEMIC PRESS INC. (LONDON) LTD.
40 PALL MALL, LONDON SW 1

Library of Congress Catalog Card Number 59-10741

Contents

	Author's Preface							PAG
	Translator's Preface							v
1	Vectors and Matrices							
	Linear Transformations						•	1
	Linear Independence of Vectors		•					1
-			•					10
2.	Generalizations							13
3.	The Principal Axis Transformation							20
	Unitary Matrices and the Scalar		ct					24
	The Principal Axis Transformati	ion for	Uni	tary a	nd H	ermiti	an	
	Matrices							26
	Real Orthogonal and Symmetric	Matri	ces					29
4.	The Elements of Quantum Mechani	CS			by the			31
							1	
	Perturbation Theory			. 1				40
6.	Transformation Theory and the Bas	ses for	the S	Statist	tical I	nterp	re-	
	tation of Quantum Mechanics .							47
7.	Abstract Group Theory							58
	Theorems for Finite Groups							59
	Examples of Groups							61
	Conjugate Elements and Classes							65
8	Invariant Subgroups							
0.	The Factor Group		• 2000		•		•	67
	Isomorphism and Homomorphism		•			•	•	68
0			•	•			•	69
9.	The General Theory of Representati	ons	•	•			•	72
0.	Continuous Groups						•	88
1.	Representations and Eigenfunctions			•			•	102
2.	The Algebra of Representation Theorem	ory						112
3.	The Symmetric Group			et assite as u				124
	Appendix to Chapter 13. A Lem	ma Re	lated	to th	e Sym	metri	C	
	Group				. ~ 511			140
4	The Rotation Groups							
	The recommend of the state of t		STATE OF STA	. 500				142

	CONTENTS			vi
15	. The Three-Dimensional Pure Rotation Group			PAGI
	Spherical Harmonics			153
	The Homomorphism of the Two-Dimensional Unitary		•	153
		Gro	up	
		•		157
	The Representations of the Unitary Group			161
	The Representations of the Three-Dimensional Pure R	Lotatio	n	
	Group			166
16.	The Representations of the Direct Product			1071
			•	171
17.	The Characteristics of Atomic Spectra			177
	Eigenvalues and Quantum Numbers	12233		177
	The Vector Addition Model		•	184
	Appendix to Chapter 17. A Relationship Among B	inomi		105
	Coefficients		Tex	194
				105
18.	Selection Rules and the Splitting of Spectral Lines .		•	195
19.	Partial Determination of Eigenfunctions from Their Transfor	rmatic	ora cre	
	Properties			210
20.	Electron Spin			220
	The Physical Basis for the Pauli Theory			220
	Invariance of the Description under Spatial Rotation			223
	Connection with Representation Theory			227
	Appendix to Chapter 20. Linearity and Unitarity of R	otatio	n	
	Operators			233
21.	The Total Angular Momentum Quantum Number .		•	237
99	The Rine Comments of Co			
44.	The Fine Structure of Spectral Lines	•		251
23.	Selection and Intensity Rules with Spin			900
	The Hönl-Kronig Intensity Formulas	•	•	266
	The Landé g-Formula	•	•	275
	The Interval Rule	•	•	278
	The interval fedie	•	•	280
24.	Racah Coefficients			284
	Conjugate Complex Representations			285
	Symmetric Form of the Vector Coupling Coefficients			289
	Covariant and Contravariant Vector Coupling Coefficient	g		292
	Racah Coefficients		40	296
	Matrix Elements of Spin-Free Tensor Operators			
	General Two Sided Tanger Operators			303

viii	CONT	ENT	8				Y	PAGE
25. The Building-Up Principle				•	•		•	309
26. Time Inversion								325
Time Inversion and Ant	iunitary	Ope	rators			1.		325
Determination of the Ti	me Inve	rsion	Operat	tor				329
Transformation of the E	Ligenfun	ction	s under	A	tiunita	ry		
Operators								333
Reduction of Corepresen	tations							335
Determination of the Îr	reducible	e Cor	epresen	tati	ons			340
Consequences of Invaria	nce und	er Ti	ime Inv	ersi	on.	•		344
27. Physical Interpretation a	nd Class	ical	Limite	of	Repre	sentat	ion	
Coefficients, Three- and Six	k-j Syml	bols						349
Representation Coefficie								350
Vector Coupling Coeffici							4	351
Racah Coefficients .			•		•	•		355
Appendix A. Conventions .						•		357
Appendix B. Summary of For	mulas					:		361

Subject Index

1. Vectors and Matrices

Linear Transformations

An aggregate of n numbers $(v_1, v_2, v_3, \dots, v_n)$ is called an n-dimensional vector, or a vector in n-dimensional space; the numbers themselves are the components of this vector. The coordinates of a point in n-dimensional space can also be interpreted as a vector which connects the origin of the coordinate system with the point considered. Vectors will be denoted by bold face German letters; their components will carry a roman index which specifies the coordinate axis. Thus v_k is a vector component (a number), and v_k is a vector, a set of n numbers.

Two vectors are said to be equal if their corresponding components are equal. Thus

$$\mathfrak{v} = \mathfrak{w} \tag{1.1}$$

is equivalent to the n equations

$$v_1 = w_1;$$
 $v_2 = w_2;$ ···; $v_n = w_n$

A vector is a null vector if all its components vanish. The product cv of a number c with a vector v is a vector whose components are c times the components of v, or $(cv)_k = cv_k$. Addition of vectors is defined by the rule that the components of the sum are equal to the sums of the corresponding components. Formally

$$(\mathfrak{v} + \mathfrak{w})_k = \mathfrak{v}_k + \mathfrak{w}_k. \tag{1.2}$$

In mathematical problems it is often advantageous to introduce new variables in place of the original ones. In the simplest case the new variables x'_1, x'_2, \dots, x'_n are linear functions of the old ones, x_1, x_2, \dots, x_n . That is

$$x'_{1} = \alpha_{11}x_{1} + \cdots + \alpha_{1n}x_{n}$$

$$x'_{2} = \alpha_{21}x_{1} + \cdots + \alpha_{2n}x_{n}$$

$$\vdots$$

$$x'_{n} = \alpha_{n1}x_{1} + \cdots + \alpha_{nn}x_{n}$$
(1.3)

Or

$$x_i' = \sum_{k=1}^n \alpha_{ik} x_k \,. \tag{1.3a}$$

The introduction of new variables in this way is called linear transformation.

The transformation is completely determined by the coefficients $\alpha_{11}, \dots, \alpha_{nn}$, and the aggregate of these n^2 numbers arranged in a square array is called the *matrix* of the linear transformation (1.3):

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn} \end{pmatrix}$$

$$(1.4)$$

We shall write such a matrix more concisely as (aix) or simply a.

For Eq. (1.3) actually to represent an introduction of new variables, it is necessary not only that the x' be expressible in terms of the x, but also that the x can be expressed in terms of the x'. That is, if we view the x_i as unknowns in Eq. (1.3), a unique solution to these equations must exist giving the x in terms of the x'. The necessary and sufficient condition for this is that the determinant formed from the coefficients a_{ik} be nonzero:

$$\begin{vmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & \vdots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nn} \end{vmatrix} \neq 0. \tag{1.4a}$$

Transformations whose matrices have nonvanishing determinants are referred to as proper transformations, but an array of coefficients like (1.4) is always called a matrix, whether or not it induces a proper transformation. Boldface letters are used to represent matrices; matrix coefficients are indicated by affixing indices specifying the corresponding axes. Thus α is a matrix, an array of n^2 numbers; α_{jk} is a matrix element (a number).

Two matrices are equal if all their corresponding coefficients are equal. Thus

$$\alpha = \beta \tag{1.5}$$

is equivalent to the n2 equations

$$\alpha_{jk} = \beta_{jk} \quad (j, k = 1, 2, \cdots, n).$$

Another interpretation can be placed on the equation

$$x_i' = \sum_{k=1}^n \alpha_{ik} x_k \tag{1.3a}$$

by considering the x'_j , not as components of the original vector in a new coordinate system, but as the components of a new vector in the original

coordinate system. We then say that the matrix a transforms the vector z into the vector z', or that a applied to z gives z'

$$z' = \alpha z. \tag{1.3b}$$

This equation is completely equivalent to (1.3a).

An n-dimensional matrix is a linear operator on n-dimensional vectors. It is an operator because it transforms one vector into another vector; it is linear since for arbitrary numbers a and b, and arbitrary vectors \mathbf{r} and \mathbf{v} , the relation

$$\alpha(a\mathbf{r} + b\mathbf{v}) = a\alpha\mathbf{r} + b\alpha\mathbf{v} \tag{1.6}$$

is true. To prove (1.6) one need only write out the left and right sides explicitly. The kth component of $a\mathbf{r} + b\mathbf{v}$ is $a\mathbf{r}_k + b\mathbf{v}_k$, so that the ith component of the vector on the left is:

$$\sum_{k=1}^{n} \alpha_{ik} (a x_k + b v_k).$$

But this is identical with the ith component of the vector on the right side of (1.6)

$$a\sum_{k=1}^n\alpha_{ik}r_{k}+b\sum_{k=1}^n\alpha_{ik}v_k.$$

This establishes the linearity of matrix operators.

An n-dimensional matrix is the most general linear operator in n-dimensional vector space. That is, every linear operator in this space is equivalent to a matrix. To prove this, consider the arbitrary linear operator $\mathbf{0}$ which transforms the vector $\mathbf{e}_1 = (1, 0, 0, \cdots, 0)$ into the vector $\mathbf{e}_{1} = (1, 0, 0, \cdots, 0)$ into the vector $\mathbf{e}_{2} = (0, 1, 0, \cdots, 0)$ into the vector \mathbf{e}_{3} , and finally, the vector $\mathbf{e}_{n} = (0, 0, 0, \cdots, 1)$ into \mathbf{e}_{2} , where the components of the vector \mathbf{e}_{2} , are \mathbf{e}_{1} , \mathbf{e}_{2} , \cdots , \mathbf{e}_{n} . Now the matrix (\mathbf{e}_{1k}) transforms each of the vectors \mathbf{e}_{1} , \mathbf{e}_{2} , \cdots , \mathbf{e}_{n} into the same vectors, \mathbf{e}_{1} , \mathbf{e}_{2} , \cdots , \mathbf{e}_{n} as does the operator $\mathbf{0}$. Moreover, any n-dimensional vector \mathbf{e}_{3} is a linear combination of the vectors \mathbf{e}_{1} , \mathbf{e}_{2} , \cdots , \mathbf{e}_{n} . Thus, both $\mathbf{0}$ and (\mathbf{r}_{1k}) (since they are linear) transform any arbitrary vector \mathbf{e}_{3} into the same vector \mathbf{e}_{1} , \mathbf{e}_{2} , \cdots , \mathbf{e}_{n} . The matrix (\mathbf{r}_{1k}) is therefore equivalent to the operator $\mathbf{0}$.

The most important property of linear transformations is that two of them, applied successively, can be combined into a single linear transformation. Suppose, for example, we introduce the variables x' in place of the original x via the linear transformation (1.3), and subsequently introduce variables x'' via a second linear transformation,

$$x''_{1} = \beta_{11}x'_{1} + \beta_{12}x'_{2} + \cdots + \beta_{1n}x'_{n}$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$x''_{n} = \beta_{n1}x'_{1} + \beta_{n2}x'_{2} + \cdots + \beta_{nn}x'_{n}.$$
(1.7)

Both processes can be combined into a single one, so that the x'' are introduced directly in place of the x by one linear transformation. Substituting (1.3) into (1.7), one finds

$$x_{1}'' = \beta_{11}(\alpha_{11}x_{1} + \cdots + \alpha_{1n}x_{n}) + \cdots + \beta_{1n}(\alpha_{n1}x_{1} + \cdots + \alpha_{nn}x_{n})$$

$$x_{2}'' = \beta_{21}(\alpha_{11}x_{1} + \cdots + \alpha_{1n}x_{n}) + \cdots + \beta_{2n}(\alpha_{n1}x_{1} + \cdots + \alpha_{nn}x_{n})$$

$$\vdots$$

$$(1.8)$$

$$x_n'' = \beta_{n1}(\alpha_{11}x_1 + \cdots + \alpha_{1n}x_n) + \cdots + \beta_{nn}(\alpha_{n1}x_1 + \cdots + \alpha_{nn}x_n).$$

Thus, the x'' are linear functions of the x. We can write (1.8) more concisely by condensing (1.3) and (1.7)

$$x'_{j} = \sum_{k=1}^{n} \alpha_{jk} x_{k}$$
 $(j = 1, 2, \dots, n)$ (1.3c)

$$x_i'' = \sum_{j=1}^{n} \beta_{ij} x_j'$$
 $(i = 1, 2, \dots, n).$ (1.7a)

Then (1.8) becomes

$$x_i'' = \sum_{i=1}^{n} \sum_{k=1}^{n} \beta_{ij} \alpha_{jk} x_k.$$
 (1.8a)

Furthermore, by defining γ through

$$\gamma_{ik} = \sum_{i=1}^{n} \beta_{ij} \alpha_{jk} \tag{1.9}$$

one obtains simply

$$x_i^s = \sum_{k=1}^n \gamma_{ik} x_k. \tag{1.8b}$$

This demonstrates that the combination of two linear transformations (1.7) and (1.3), with matrices (β_{ik}) and (α_{ik}) is a single linear transformation which has the matrix (γ_{ik}) .

The matrix (γ_{ik}) , defined in terms of the matrices (α_{ik}) and (β_{ik}) according to Eq. (1.9), is called the *product* of the matrices (β_{ik}) and (α_{ik}) . Since (α_{ik}) transforms the vector \mathbf{r} into $\mathbf{r}' = \alpha \mathbf{r}$, and (β_{ik}) transforms the vector \mathbf{r}' into $\mathbf{r}'' = \beta \mathbf{r}'$, the product matrix (γ_{ik}) by its definition, transforms \mathbf{r} directly into $\mathbf{r}'' = \gamma \mathbf{r}$. This method of combining transformations is called "matrix multiplication," and exhibits a number of simple properties, which we now enumerate as theorems.

First of all we observe that the formal rule for matrix multiplication is the same as the rule for the multiplication of determinants.

1. The determinant of a product of two matrices is equal to the product of the determinants of the two factors.

In the multiplication of matrices, it is not necessarily true that

$$\alpha\beta = \beta\alpha.$$
 (1.E.1)

For example, consider the two matrices

 $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

Then

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

and

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

This establishes a second property of matrix multiplication.

2. The product of two matrices depends in general upon the order of the factors. In the very special situation when Eq. (1.E.1) is true, the matrices a and B are said to commute.

In contrast to the commutative law,

3. The associative law of multiplication is valid in matrix multiplication. That is,

$$\gamma(\beta\alpha) = (\gamma\beta)\alpha. \tag{1.10}$$

Thus, it makes no difference whether one multiplies γ with the product of β and α , or the product of γ and β with α . To prove this, denote the *i-k*th element of the matrix on the left side of (1.10) by ϵ_{ib} . Then

$$\epsilon_{ik} = \sum_{j=1}^{n} \gamma_{ij} (\beta \alpha)_{jk} = \sum_{j=1}^{n} \sum_{l=1}^{n} \gamma_{ij} \beta_{jl} \alpha_{lk}. \qquad (1.10a)$$

The i-kth element on the right side of (1.10) is

$$\epsilon'_{ik} = \sum_{l=1}^{n} (\gamma \beta)_{il} \alpha_{lk} = \sum_{l=1}^{n} \sum_{j=1}^{n} \gamma_{ij} \beta_{jl} \alpha_{lk}.$$
 (1.10b)

Then $\epsilon_{ik} = \epsilon'_{ik}$, and (1.10) is established. One can therefore write simply

 $\gamma \beta \alpha$ for both sides of (1.10).

The validity of the associative law is immediately obvious if the matrices are considered as linear operators. Let α transform the vector \mathbf{r} into $\mathbf{r}' = \alpha \mathbf{r}$, β the vector \mathbf{r}' into $\mathbf{r}'' = \beta \mathbf{r}'$, and γ the vector \mathbf{r}'' into $\mathbf{r}''' = \gamma \mathbf{r}''$. Then the combination of two matrices into a single one by matrix multiplication signifies simply the combination of two operations. The product $\beta \alpha$ transforms \mathbf{r} directly into \mathbf{r}'' , and $\gamma \beta$ transforms \mathbf{r}' directly into \mathbf{r}'' . Thus both $(\gamma \beta)\alpha$ and $\gamma(\beta \alpha)$ transform \mathbf{r} into \mathbf{r}''' , and the two operations are equivalent.

4. The unit matrix

$$\mathbf{1} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$
 (1.11)

plays a special role in matrix multiplication, just as the number 1 does in ordinary multiplication. For every matrix α ,

$$\alpha \cdot 1 = 1 \cdot \alpha$$
.

That is, 1 commutes with all matrices, and its product with any matrix is just that matrix again. The elevents of the unit matrix are denoted by the symbol δ_{ik} , so that

$$\delta_{ik} = 0$$
 $(i \neq k)$
 $\delta_{ik} = 1$ $(i = k)$. (1.12)

The δ_{ik} defined in this way is called the Kronecker delta-symbol. The matrix $(\delta_{ik}) = 1$ induces the *identity* transformation, which leaves the variables unchanged.

If for a given matrix α , there exists a matrix β such that

$$\beta\alpha=1, \qquad (1.13)$$

then β is called the *inverse*, or *reciprocal*, of the matrix α . Equation (1.13) states that a transformation via the matrix β exists which combines with α to give the identity transformation. If the determinant of α is not equal to zero $(|\alpha_{ik}| \neq 0)$, then an inverse transformation always exists (as has been mentioned on page 2). To prove this we write out the n^2 equations (1.13) more explicitly

$$\sum_{j=1}^{n} \beta_{ij} \alpha_{jk} = \delta_{ik} \qquad (i, k = 1, 2, \dots, n).$$
 (1.14)

Consider now the n equations in which i has one value, say l. These are n linear equations for n unknowns $\beta_{l1}, \beta_{l2}, \cdots, \beta_{ln}$. They have, therefore, one and only one solution, provided the determinant $|\alpha_{jk}|$ does not vanish. The same holds for the other n-1 systems of equations. This establishes the fifth property we wish to mention.

5. If the determinant $|\alpha_{jk}| \neq 0$, there exists one and only one matrix β such that $\beta \alpha = 1$.

Moreover, the determinant $|\beta_{jk}|$ is the reciprocal of $|\alpha_{jk}|$, since, according to Theorem 1,

$$|\boldsymbol{\beta}_{jk}| \cdot |\boldsymbol{\alpha}_{jk}| = |\delta_{jk}| = 1. \tag{1.15}$$

From this it follows that α has no inverse if $|\alpha_{ik}| = 0$, and that β , the inverse of a, must also have an inverse.

We now show that if (1.13) is true, then

$$\alpha\beta = 1 \tag{1.16}$$

is true as well. That is, if β is the inverse of α , then α is also the inverse of 6. This can be seen most simply by multiplying (1.13) from the right with 6,

$$\beta\alpha\beta = \beta, \tag{1.17}$$

and this from the left with the inverse of \$\beta\$, which we call \$\gamma\$. Then

$$\gamma \beta \alpha \beta = \gamma \beta$$

and since, by hypothesis $\gamma \beta = 1$, this is identical with (1.16). Conversely, (1.13) follows easily from (1.16). This proves Theorem 6 (the inverse of a is denoted by α^{-1}).

6. If α^{-1} is the inverse of α , then α is also the inverse of α^{-1} .

It is clear that inverse matrices commute with one another.

Rule: The inverse of a product αβγδ is obtained by multiplying the inverses of the individual factors in reverse order $(\delta^{-1}\gamma^{-1}\beta^{-1}\alpha^{-1})$. That is

$$(\delta^{-1}\gamma^{-1}\beta^{-1}\alpha^{-1})\cdot(\alpha\beta\gamma\delta)=1.$$

Another important matrix is

7. The null matrix, every element of which is zero.

$$\mathbf{0} = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}. \tag{1.18}$$

Obviously one has

$$\alpha \cdot 0 = 0 \cdot \alpha = 0$$

for any matrix a.

The null matrix plays an important role in another combination process for matrices, namely, addition. The sum γ of two matrices α and β is the matrix whose elements are

$$\gamma_{ik} = \alpha_{ik} + \beta_{ik}. \tag{1.19}$$

The n^2 equations (1.19) are equivalent to the equation

$$\gamma = \alpha + \beta$$
 or $\gamma - \alpha - \beta = 0$.

Addition of matrices is clearly commutative.

$$\alpha + \beta = \beta + \alpha. \tag{2.20}$$

Moreover, multiplication by sums is distributive.

$$\gamma(\alpha + \beta) = \gamma\alpha + \gamma\beta$$

 $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$.

Furthermore, the product of a matrix α and a number a is defined to be that matrix γ each element of which is a times the corresponding elements of α .

$$\gamma_{ik} = a\alpha_{ik}. \tag{1.21}$$

The formulas

$$(ab)\alpha = a(b\alpha);$$
 $\alpha a\beta = a\alpha\beta;$ $a(\alpha + \beta) = a\alpha + a\beta$

then follow directly.

Since integral powers of a matrix a can easily be defined by successive multiplication

$$\alpha^{3} = \alpha \cdot \alpha; \qquad \alpha^{3} = \alpha \cdot \alpha \cdot \alpha; \dots$$

$$\alpha^{-2} = \alpha^{-1} \cdot \alpha^{-1}; \qquad \alpha^{-3} = \alpha^{-1} \cdot \alpha^{-1} \cdot \alpha^{-1}; \dots \qquad (1.22)$$

polynomials with positive and negative integral exponents can also be defined

$$\cdots + a_{-n}\alpha^{-n} + \cdots + a_{-1}\alpha^{-1} + a_0\mathbf{1} + a_1\alpha + \cdots + a_n\alpha^n + \cdots$$
 (1.23)

The coefficients a in the above expression are not matrices, but numbers. A function of a like (1.23) commutes with any other function of a (and, in particular, with a itself).

Still another important type of matrix which appears frequently is the

diagonal matrix.

8. A diagonal matrix is a matrix the elements of which are all zero except for those on the main diagonal.

$$\mathbf{D} = \begin{pmatrix} D_1 & 0 & \cdots & 0 \\ 0 & D_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D_n \end{pmatrix}. \tag{1.24}$$

The general element of this diagonal matrix can be written

$$\mathbf{D}_{ik} = D_i \delta_{ik} \,. \tag{1.25}$$

All diagonal matrices commute, and the product of two diagonal matrices is again diagonal. This can be seen directly from the definition of the product.

$$(\mathbf{D}\mathbf{D}')_{ik} = \sum_{j} \mathbf{D}_{ij} \mathbf{D}'_{jk} = \sum_{j} D_{i} \delta_{ij} D'_{j} \delta_{jk} = D_{i} D'_{i} \delta_{ik}. \tag{1.26}$$