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Author's Preface

The purpose of this book is to describe the application of group theoretical
methods to problems of quantum mechanics with specific reference to atomic
spectra. The actual solution of quantum mechanical equations is, in general,
so difficult that one obtains by diréct calculations only crude approximations
to the real solutions. It is gratifying, therefore, that a large part of the
relevant results can be deduced by considering the fundamental symmetry
operations. ‘ ;

When the original German version was first published, in 1931, there was
a great reluctance among physicists toward accepting group theoretical
arguments and the group theoretical point of view. It pleases the author
that this reluctance has virtually vanished in the meantime and that, in fact,
the younger generation does not understand the causes and the basis for
this reluctance. Of the older generation it was probably M. von Laue who
first recognized the significance of group theory as the natural tool with

- which to obtain a first orientation in problems of quantum mechanics. Von
Laue’s encouragement of both publisher and author contributed significantly
to bringing this book into existence. I like to recall his question as to which
results derived in the present volume I considered most important. My
answer was that the explanation of Laporte’s rule (the concept of parity) and
the quantum theory of the vector addition model appeared to me most
significant. Since that time, I have come to agree with his answer that the
recognition that almost all rules of spectroscopy follow from the symmetry
“of the problem is the most remarkable result.

Three new chapters have been added in translation. The second half of
Chapter 24 reports on the work of Racah and of his followers. Chapter 24
of the German edition now appears as Chapter 25. Chapter 26 deals with
time inversion, a symmetry operation which had not yet been recognized
at the time the German edition was written. The contents of the last part
of this chapter, as well as that of Chapter 27, have not appeared before in
print. While Chapter 27 appears at the end of tli¢ book for editorial reasons,
the reader may be well advised to glance at it when studying, in Chapters
17 and 24, the relevant concepts. The other chapters represent the translation
of Dr. J. J. Griffin, to whom the author is greatly indebted for his ready
acceptance of several suggestions and his generally cooperative attitude. He
also converted the left-handed coordinate system originally used to a right-
handed system and added an Appendix oh notations.
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iv AUTHOR'S PREFACE

The character of the book—ite explicitness and its restriction to one
subject only, viz. the quantum mechanics of atomic spectra—has not been
changed. Itsprinoipalresultswereoontainedinarbinlesﬁrstpublishedinthe '
Zeitschrift fiér Physik in 1926 and early 1927. The initial stimulus for these -
articles was given by the investigations of Heisenberg and Dirac on the.
quantum theory of assemblies of identical particles. Weyl delivered lectures
in Ziirich on related subjects during the academic year 1927-1928. These
were later expanded into his well-known book. :

" When it became known that the German edition was being translated,
. many additions were suggested. Itis regrettable that most of these could not
be followed without substantially changing the outlook'and also the size of
the volume. Author and translator nevertheless are grateful for these
suggestions which were very encouraging. The author also wishes to thank
‘his colleagues for many stimulating discussions on the role of group theory in
_ quantum mechanics as well as on more specific subjects. He wishes to record
his deep indebtedness to Drs. Bargmann, Michel, Wightman, and, last but
not least, J. von Neumann. '
E. P. WIGNER
Princeton, New Jersey

February, 1959



Translator’s Preface

/

This translation was initiated while the translator was a graduate student
at Princeton University. It was motivated by the lack of a good English
work on the subject of group theory from the physicist’s point of view. Since
that time, several books have been published in English which deal with
group theory in quantum mechanics. Still, it is perhaps a reasonable hope

that this translation will facilitate the introduction of English-speaking =

physicists to the use of group theory in modern physics.

The book is an interlacing of physics and ‘mathematics. The first three
chapters discuss the elements of linear vector theory. The second three deal
more specifically with the rudiments of quantum mechanics itself. Chaptors
7 through 18 are again mathematical, although much of the material covered
should be familiar from an elementary course in quantum theory. Chapters
17 through 23 are specifically concerned with atomic spectra, as is Chapter 25.
The remaining chapters are additions to the German text; they discuss
~ topics which have been developed since the original publication of this book:
the recoupling (Racah) coefficients, the time inversion operation, and the
classical interpretations of the coefficients. ;

Various readers may wish to utilize the book differently. Those who are
interested specifically in the mathematics of group theory might skim over
the chapters dealing with quantum' physics. Others might choose to de-
- emphasize the mathematics, touching Chapters 7, 9, 10, 13, and 14 lightly for
- background and devoting more attention to the subsequent chapters.

Students of quantum mechanics and physicists who prefer familiar. material
interwoven with the less familiar will probably apply & more even distribution
of empbasis. | ;

The translator would like to express his gratitude to Professor E. P. Wigner
for encouraging and guiding the task, to Drs. Robert Johnston and John
McHale who suggested various improvements in the text, and to Mrs. .
Marjorie Dresback whose secretarial assistance was most valuable.

d. J. GRIFFIN
Los Alamos, New Mexico

February, 1969
N
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1. Vectors and Matrices

Linear Transformations

An aggregate of # numbers (v;, Dy, Dy, * * * , 1) i8 called an n-dimensional
vector, or a vector in n-dimensional space; the numbers themselves are the
. components of this vector. The coordinates of a point in n-dimensional space
can also be interpreted as a vector which connects the origin of the co-
ordinate system with the point considered. Vectors will be denoted by bold
face German letters; their components will carry a roman index which
specifies the coordinate axis. Thus p, is a vector component (a number), and
" ® is a vector, a set of » numbers. .

Two vectors are said to be equal if their corresponding components are
equal. Thus : '
v=w (1.1)
is equivalent to the » equations A :

D= DOgEm g G D T W

A vector is a null vector if all its components vanish. The product ¢v of a
nmbercwithavwborois&vootorwhoseeomponentsarectimesthe
components of v, or (cv), = cv,. Addition of vectors is defined by the rule
Mthewmpouenteofthesnmmeqndtothesumsoftheoompondmg'
components. Formally

o+ W) =0+ w,. : (1.2)

In mnthemtuoal problems it is often advantageous to introduce new
variables in place of the original ones. In the simplest case the new variables
#3, %3, * , %, are linear functions of the old ones, z,, z,, < -, ,. That is

7 =ann + -+ az,
za—ﬂn=z+ * + ag,2,

(13) .

Ty =gt + 0+ Ay,

»

5 *-.El% . 139)

The introduction of new variables in this way is called lénear transformation.
¢ 1



2 GROUP THEORY AND ATOMIC SPECTRA

The transformation is completely determined by the coefficients ay,, - - , @, .,
and the aggregate of these #2 numbers arranged in a square array is called

. the matriz of the linear transformation (1.3):

oy @y v @,
Q5 Oy %3p :
(1.4)
Qpy Gpg * " Oy,

We shall write such a matrix more concisely as (a,;) or simply e.
For Eq. (1.3) actually to represent an introduction of new variables, it is

| necessary not only that the 2’ be expressible in terms of the z, but also that
the z can be expressed in terms of the . That is, if we view the z,; as un-

knowns in Eq. (1.3), a unique solution to these equations must exist giving
the z in terms of the z’.. The necessary and sufficient condition for this is
that the determinant formed from the coefficients a,, be nonzero: i

ay ooy,
: L (1.48)

Qpy * L7

Transformations whose matricés have nonvanishing determinants are referred
to as proper transformations, but an array of coefficients like (1.4) is always
called a matrix, whether or not it induces a proper transformation. Bold-

. face letters are used to represent matrices; matrix coefficients are indieated

by affixing indices specifying the corresponding axes. Thus « is a matrix,
an array of »? numbers; a,, is a matrix element (a number). A
Two matrices are equal if all their corresponding coefficients are equal.
Thus : f : ' :
a=p : (1.5)
is equivalent to the 22 equations

=B (Gk=12"---,m).
Another interpretation can be placed on the equation

L s
#ﬁ%%n ‘ (1.3a)

‘by considering the z;, not as components of the original vector in a new

coordinate system, but-as the components of a new vector in the original

®



' VECTORS AND MATRICES 38

coordinate system. We then say that the matrix & transforms the vector 2
into the vector %', or that & applied to z gives 2’

2 = ax. (l.3b)

This equation is completely equivalent to (1.3a).

An n.dimensional matrix is a linear operator on n-dimensional vectors. It
is an operator because it transforms one vector into another vector; it is
linear since for arbitrary numbers a and b, and arbitrary vectors ¢ and v,
the relation '

a(at + bv) = aat + bav (1.6)

is true. To prove (1.6) one need only write out the left and right sides
explicitly. The kth component of at + v is at, + bv,, so that the sth com-
ponent of the vector on the left is:

°

kzlau(“tk + bvy).

But this is identical with the sth oomponent of the vector on the right side
of (1.6)

n ”»
a,T, > a,v,.
akgl o b\+ kzl lknh

This establishes the linearity of matrix operators. ’

" An n-dimensional matrix is the most general linear operator in n-dimensional vector

* space. That is, every linear operator in this space is equivalent to & matrix. To prove

this, consider the arbitrary linear operator O which transforms the vector e =(1,0,0,

***, 0) into the vector t,,, the vector e, = (0,1, 0, - - - , 0) into the vectort.,, and finally,

the vector e, = (0,0,0, -, 1) into ¢,,, where the components of the vector ¢,, are

Ties T * ° * 5 Tp. Now the matrix (r,,) transforms each of the vectors €, &y, ° * * ,¢, into

* the same vectors, t,;, L.y, * * * , L., as does the operator 0. Moreover, any n-dimensional

vector @ is a linear combination of the vectors e, e, - - -, €., Thus, both 0 and

(ta) (since they are linear) transform any arbitrary vector @ into the same vector
%y + ‘- * + 0,%... The matrix (r,,) is therefore equivalent to the operator 0.

+ The most important property of linear transformations is that two of them,
applied successively, can be combined into a gsingle linear ttansformgtion.
Suppose, for example, we introduce the variables z’ in place of the original

Z via the linear transformation (1.3), and subsequently introduce variables
«” via a second linear transformation, ;
21 =Bu® + Bt + - * + Brua
: (L)

:l:: —_ pnlzi 3 pulz; sfrte s s pnn”:r



4 GROUP THEORY AND ATOMIC SPECTRA

Bo*h processes can bewmbmed into a single one, so that the z” are introduced

directly in place of the z by one linear transformation. Sub%it.uting (1.3)

into (1.7), one finds g
2 = Bulay® + + + G®a) 00+ Pral@m o+ AT,)
‘”;'-—'pn(“nxl ) +alﬂzﬂ)+ BAEE +plu(anlxl - +am|zn)

(1.8)

z: i pal(auxl L it ulﬂzﬂ) e > pnﬂ(culzl s g annzn)'

Thus, the z” are linear functions of the z. We can write (1.8) more concisely
by condensing (1.3) and (1.7) :

2 =ki1'¢’kxk (j=L12--- s“) : (1.3.0) -
: z = f.' Ba; (=12---,m). (1.7a)
Then (1.8) becomes ! ‘ ;
7 =3 3 Putnts (1.8a)
j=1 k=1 )
Furthermore, by defining y through 4
Ya =j§13u“u Ll : (1.9)
one obtains simply : :
7 =2 Yo' (1.8b)

{
This demonstrates that the combination of two linesr transformations (1.7) °
and (1.3), with matrices (B,,) and (a,,) is a single linear transformation which
has the matrix (Ys). : / ,

The matix (y), defined in terms of the matrices (a,) and {B,,) according
to Eq. (1.9), is called the product of the matrices (B,) and (a,). Since (ag,)
transforms the vector ¢ into ¢ = ar, and (B,) transforms the vector ¢’ into
t” = Pr’, the product matrix (y,) by its definition, transforms ¢ directly
into £* = yr. This method of combining transformations is called “matrix
multiplication,” and exhibits a number of simple properties, which we now
enumerate as theorems. ;

First of all we observe that the formal rule for matrix multipljcatiop is.
the same as the rule for the multiplication of determinants.

1. The determinant of a product of two matrices is equal to the product of the
determinanis of the two factors. :



VECTORS AND MATRICES B
In the multiplication of matrices, it is not necessarily true that
_ af = Ba. - (LED)
For example, consider the two matrices :

(6 1) = G 3)

D=6
¢ 966 3

This establishes a second property of matrix multiplication.
~2. The product of two matrices depends in general wpon the order of the factors.
In the very special situation when Eq. (1.E.1) is true, the matrices a and
P are said to commute.
1In contrast to the commutative law, :
3. The associative law of multiplication is valid in matriz muliiplication.
That is, A '

Then

O

and

ot

Y{fa) = (YR)a. (1.10)

Thus, it makes no difference whether one multiplies y with the product of §
and a, or the product of y and B with a. To prove this, denote the +—kth
element of the matrix on the left side of (1.10) by €. Then

€a = 2 Yu(Ba)y = i i: YiulBn®u - (1.10a)
gt §=1 =1

The i-kth element on the right side of (1.10) is
3 ” n n .
€ =‘21'(Yp)u¢u= =12i ,_21 YoButa - (1.10b)

Then €, = €y, and (1.10) is established. One can therefore write simply
yPBa for both sides of (1.10).

The validity of the associative law is immediately obvious if the matrices
are considered as linear operators. Let. a transform the vector ¢ into ¢’ =
ar, B the vector ¢’ into ¢” = Bt’, and y the vector¢” into ¢” = y¢". Then
the combination of two matrices into & single one by matrix multiplication
signifies simply the combination of two operations. The product Pa trans.
forms ¢ directly into ¢, and y@ transforms ¢’ directly into ¢”. Thus both *
(YB)x and y(Ba) transform ¢ into ¢”, and the two operations are equivalent.
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4. The unit mairiz . .

100 -0
010 -0
001 -0
p e SR i : (1.11)
000 -+ 1

plays a npecial role in matrix multiplication, just as the number 1 does in
ordinary multiplication. For every matrix a,

a'l=1a

Tha.t is, 1 commutes with all matrices, and its product with any matnx is
just that matrix again. The elexents of the unit matrix are denoted by the

symbol 6,,, so that
0:=0 (¢ #£ k) ;

P W T L 1.12)

The 4, defined in this way is called the Kronecker delta-symbol. The matrix
(04) = 1 induces the identity transformation, which leaves the variables
unchanged. -
If for a given matrix a, there exists a matrix § such that
Ba=1, (1.13)

then @ is called the inverse, or reciprocal, of the matrix a. Equation (1.13)

. states that a transformation via the matrix B exists which combines with o

to give the identity transformation. If the determinant of & is not equal to
Zero (|a‘,‘| 5 0), then an inverse transformation always -exists (as has been
mentioned on page 2). To prove this we write out the n? equations (1.13)
more explicitly '

n U )\
jZlﬂtﬂ,k = e GikeR B on) (1.14)

Consider now the # equations in which & has one value, say l. These are n
linéar equations for » unknowns BusBiz * * *» B They have, therefore, one

~ and only one solution, provided the determinant |et,4| does not, vanish. The

same holds for the other » — 1 systems of equations. This establishes the
fifth property we wish to mention.

5. If the determinant |a;,| # 0, theree:mrtsmw and only one matriz p such
that pa =1
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Moreover, the determinant || is the reciprocal of |ay|, since, according
to Theorem 1,

' Bl  Joe] = |04 = 1. (1.15)

From this it follows that e has no inverse if |t = 0, and that B, the inverse .
of &, must also have an inverse. °
We now show that if (1.13) is true, then

af =1 (1.16)

-8 tl;ue as well. That is, if @ is fhe inverse of o, then a'is also the inverse of

B. This can be seen most simply by multiplying (1.13) from the right with 8,
g Baf =P, . (1.17)
and this from the left with the inverse of @, which we call y. Then _

YBap = yP

and since, by hypothesis y@ = 1, this is identical with (1.16). Conversely,
(1.13) follows easily from (1.16). This proves Theorem 6 (the inverse of «
is denoted by a-1).
- 6. If a1 4s the inverse of &, then a is also the inverse of a1,

It is clear that inverse matrices commute with one another.

Rule: The inverse of a product aBy$ is obtained by multiplying the
inverses of the individual factors in reverse order (§-y—'8—la-1). That is

¢y B a) - (aPyS) = 1.

Another important matrix is
7. The null matriz, every element of which is zero.

0 00 :-- 0
8 0— 0 00 -0
SN el _ (1.18)
000 -0
Obviously one has
a'0=0-a=0

for any matrix a. L
The null matrix plays an important role in another combination process
for matrices, namely, addition. The sum y of two matrices & and B is the

matrix whose elements are :
3 Y = %g + Bu - (1.19)

The n2 equations (1.19) are equivalent to the equation

Y=a+B or y—a—B=0.
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‘Addition of matrioes is clearly commutative.

a+P=P+a & T

Moreover, multiplication by sums is distributive.

yia+B) =va+ P
(@ + By =@y + BY.

 Furthermore, the product of a matriz & and a number 4 is defined to be that

matrix y each element of which is a times the corresponding elements of a.

The formulas Sy
(@b)e = alba); aaf =aaP; a(a4 B) =ax +of
then follow directly. : i
Since integral powers of a-matrix a can easily be defined by successive
" multiplication ‘ : :
» al=a-a; add=a‘a a;... ;
at=aleal; ad=al-al-al;... (1.22)

polynomials with positive and negative integral gxponénts can also be defined
;-»o+aﬂrﬁ+ -..+a_!¢—1+a01+ald+-.-+aﬂaﬂ+..... (1'23)
The coefficients a in the above expression are not matrices, but numbers. 4
Junction ‘of a like (1.23) commutes with any other function of a (and, in par-
ticular, with a stself). :
- Still another important type of matrix which appears frequently is the

8. Ada'agonalmatriza’samatrizmeekmntaofwhichareauzemmptfor
those on the main diagonal. , .
A D1 0 -+ 0 1 :
0 D, -+ O
P v L R (1.24)
0 0 - D,
The general element of this diagonal matrix can be written ot
D,,=Dd,;. (1.26)

All diagonal matrices commute, and the product of two diagonal matrices is again
diagonal. This can be seen directly from the definition of the product.

(DD')y = szi‘!lsz= ; D;‘suD;”n: 577 Dtpf"’u . - (1.26) :



