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Preface

In order to study infinite-dimensional Lie algebras with root space decom-
position as finite-dimensional simple Lie algebras, Victor Kac and Robert
Moody independently introduced Lie algebras associated with generalized
Cartan matrices, so-called “Kac-Moody algebras” in later 1960s. In last near
forty years, these algebras have played important roles in the other math-
ematical fields such as combinatorics, number theory, topology, integrable
systems, operator theory, quantum stochastic process, and in quantum field
theory of physics.

There have been several books on Kac-Moody algebras. The most au-
thoritative and influential one may be the monograph “Infinite-dimensional
Lie algebras” by Victor Kac. Our purpose of writing this book is to help
the readers to better understand Kac’s book. This book was written based
on my lecture notes in Kac-Moody algebras taught in Chinese Academy of
Mathematics and System Sciences in 2005, 2006. We have tried to give the
details that Kac’s book lacks and correct some mistakes. In many occasions,
we have reorganized the materials. For instance, we have added detailed
vertex operator and free fermionic field representations of affine Kac-Moody
algebras. Of course, we have also deleted some materials in Kac’s book which
do not seem so important to students. Nevertheless, our book contains most
of fundamental results in Kac-Moody algebras. Needless to say, this book is
not a replacement of Kac’s book, but a new choice of textbooks in the field
to researchers and students.

I would like to thank my friends Prof. Shaobin Tan and Prof. Yucai Su
for their encouragement of writing this book. I am also very grateful to my
students Li Luo and Yufeng Zhao, and to Yan Wang (a graduate student at

Nan Kai University) for their careful proof reading of the initial manuscript
and pointing out numerous typos and errors.

Xiaoping Xu
2006, Beijing



Notational Conventions

C the field of complex numbers.

1,1+ 7 {i,i+ 1,71+ 2,---,i+ j}, an index set.
Si;=1ifi=34,0ifi# j.

Z the ring of integers.

Zy {0,1,2,3,---}, the set of natural numbers

Q the field of rational numbers.
R the field of real numbers.

I1 the set of positive simple roots.
A the set of roots.

() generalized Casimier operator
W(A) the Weyl group.

T the ith simple reflection.
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Introduction

Mathematics is a logical science. Lie algebra is not a mysterious subject.
It can be viewed as “advanced linear algebra” in a certain sense. In linear al-

gebra, we mainly study vector spaces and single linear transformation. Recall
that an n x n Jordan block is a matrix of the form:

A 1 0 - 0
0 A 1
Jn,,\: . A ) 0 y (0.1)
o --- 0 x 1
0 O 0 A

where A\ € C, the field of complex numbers. A fundamental theorem in linear

algebra says that any linear transformation 7' on a finite-dimensional vector
space over C takes the Jordan form :

Jﬂl;)\l 0 - e 0O
r=| 7 a0 (0.2)
: VR |
0 0 Jno,

with respect to a certain basis.

Lie algebra is a field of studying a vector space V and a subspace G of
linear transformations on V such that

AB-BAcG if A,Beg, (0.3)

where G is called a Lie algebra and the linear transformation AB — BA is
called the commutator of linear transformations, denoted as [A, B]. “Simple
Lie algebra” and “irreducible modules” in Lie theory are generalizations of
the Jordan blocks. “Completely reducibility” is exactly a generalization of
the Jordan form. |

Lie algebra is not purely an abstract mathematics but a fundamental
tool of studying symmetries in the world. In fact, Norwegian mathematician
Sorphus Lie introduced Lie algebra in later 19th century in order to study
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the symmetry of differential equations. For instance, we have the following
theorem on a system of ordinary linear differential equations:

Theorem of Lie and Scheffers The general solution T(t) of the system
of equations:

dr;(t)

dt

can be erpressed as a function of m particular solutions and n significant
constants

fi(fa t)a 1= ]-a 23 I £ 2 (04)

Z(t) = 8(Z1(t), -+, Tm(t), 1, s cn) (0.5)
of and if only

filZ,t) = Z £i,5(Z)g;(t), (0.6)

and the differential operators

{Z 5B, | 5= 1,2, m} (0.7)
1=1

span a Lie algebra of dimension m with respect to the commutator.

In general, a differential equation can be solved explicitly just because it
has a certain symmetry related to Lie algebras.

Lie algebras are the infinitesimal structures (bones) of Lie groups, which
are symmetric manifolds. Stochastic Leowner evolution is connected to Lie
algebras with one-variable structure via conformal field theory (cf. [HP],
[LSW], [Sol). The controllability property of the unitary propagator of an
N-level quantum mechanical system subject to a single control field can be
described in terms of the structure theory of semisimple Lie algebras (cf.
'DPRR]). Moreover, Lie algebras were used to explain the degeneracies en-
countered in the genetic code as the result of a sequence of symmetry break-
ings that have occurred during its evolution (cf. [HH)).

The initial of quantum physics is the uncertainty principle, which says
that one can not measure the momentum and position of a particle at the
same time. If we denote by AP the error of the momentum and by Az the
error of position, then

AP . Az > h, (0.8)

where h is called the Plunk constant. Let C|x]| be the algebra of polynomials
in . Define the left multiplication operator L, : C[z] — Ciz] by

L.(f(z)) =cf(z) for f(z)€Clz).  (0.9)
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Represent the momentum by the operator d/dx and the position by L,. The

uncertainty can be mathematically interpreted as that the two operators d/dx

and L., can not have a common eigenvector, due to the non-commutativity:
d d

d—x—— O L — L O EL‘H = Id(C[;r:]* (0.10)

In quantum physics, a physical entity becomes an operator on a certain
Hilbert space of physical states, which are probability functions. The Hilbert
space are usually symmetric with respect to a certain Lie algebra. A quan-
tum field is an operator-valued function on the Hilbert space. It turns out
that the coefficients of certain quantum fields are connected to “affine Kac-
Moody algebras”. Throughout this book, all the vector spaces and algebras
are assumed over C.

For a vector space V', we denote by V* the space of linear functions on V.
The motivation of introducing Kac-Moody algebra was essentially to study
the following type of Lie algebra G: (1) G contains a subspace H such that

G= & UGa, Gao={u € G| |h,u| = alh)u for h € H}, (0.11)

aCH*
and Go = H; (2) @gracn+ Yo 1s contained in the subalgebra G’ generated by
{Giais Gtans s G+a, } with dimG1,, = 1; (3) the subalgebra G, generated

by {Ga:,Ga.s* »Ga, + dose not contain a nonzero proper subspace U such
that

[u,v]cU  for ueUwveg@ (0.12)

and neither does the subalgebra G_ generated by {G_n,,G—0., - ,G—a.. }-

Such an idea was also used by Li and the author [LX] to characterize “lattice
vertex operator algebras”.

A Lie algebra G is called simple if it does not contain a nonzero proper
subspace U such that

(u,v] € U for ue U, veg. (0.13)

The works of Killing and Cartan showed that any finite-dimensional simple

Lie algebra is of the above type. For a Lie algebra G and u € G, the adjoint
operator ad u is defined by

(ad u)(v) = [u, V] for veg. (0.14)

Chevalley proved that a finite-dimensional simple Lie algebra G has genera-
torse; € Go,, fi €G_n, and h; € H for ¢ = 1,2,--- ,n such that

[hiy kil =0, [hi,e5] = ai e, [hi, f5] = —as;f;, les, f3] =485, (0.15)
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(ad e;)! %" (e;) =0, (ad fi)! "%~ (f;) =0,  i#m, (0.16)

where the matrix A = (a; j)nxn is the Cartan matriz whose entries are inte-
gers satisfying:

a;; =2, a;; <0, g, =04a;;,=0, 1 % 7. (0.17)

Serre [Sj] showed that (0.15) and (0.16) are indeed the defining relations
of G. |

An n X n integer matrix A satisfying (0.17) was called a generalized Car-
tan matriz by Kac {Kvl] and Moody [Mrl]. Moreover, they used (0.15) and
(0.16) to construct a Lie algebra G(A) of the type indicated earlier, so-called
Kac-Moody algebra. The matrix A is called symmetrizable if there exists
an invertible diagonal matrix D such that DA is symmetric. The whole
business in Kac-Moody algebras took off under the assumption that A is
symmtrizable. Under this assumption, the Lie algebra G(A) has a nonde-
generate invariant bilinear form, by which a generalized Casimier operator
is obtained. The structure and highest-weight representation theories were
established by using the generalized Casimier operator and Weyl group. In
particular, an analogue of the Weyl character formula was obtained by Kac
[Kv2] for integrable highest-weight irreducible modules.

The fundamental difference between Kac-Moody algebras of infinite type
and finite-dimensional simple Lie algebras is that there are roots which are
not conjugated to simple roots, that is, imaginary roots. 1t turns out that
imaginary roots are exactly the elements in the root lattice with non-positive
square norm. The restriction of a highest-weight modules to an imaginary
root subalgebra is isomorphic to a direct sum of its Verma modules. When
A is indecomposable and of co-rank one, the algebra G(A) is called an affine
Kac-Moody algebra. It turns out that affine Kac-Moody algebras have natural
loop-algebra realizations, which imply by Sugawara operators that they are
conformal invariant. In fact, they appeared in physics as “current algebras”.
The denominator identities of afline Kac-Moody algebras are exactly the
well-known Macdonald’s identities (cf. [Mi]). The characters of integrable
highest-weight modules of afline Kac-Moody algebras satisfy certain modular
transformation properties. In particular, the g-dimensions of the subspaces of
imaginary root strings in the modules are modular forms. Affine Kac-Moody
algebras are also symmetries of some integrable systems.

Lepowsky and Wilson [LW1] introduced vertex operators in order to
study the explicit structure of integrable highest-weight modules of affine
Kac-Moody algebras. They [LW2, LW3] used these operators to prove the
famous Rogers-Ramanujan identities. Frankel [Fi], and Feingold and Frenkel




Introduction 5

IFF2| gave free fermionic field realizations of some integrable highest-weight

modules of affine Kac-Moody algebras. We refer [Kv3| for the more detailed
history in Kac-Moody algebras and credit countings.

Chapter 1 is mainly the structure theory of Kac-Moody algebras. First we
use (0.15) to define the Lie algebra G(A) associated with any square matrix
A without zero rows and columns. When A is a generalized Cartan matrix,
the algebra G(A) was originally introduced by Kac [Kvl] and Moddy [Mrl]
independently. This more general settings is used later to prove the defining
relations of Kac-Moody algebras. When A is symmetrizable, we construct
a. nondegenerate invariant bilinear form of the Lie algebra G(A). By this
form, we obtain a generalized Casimir operator, which plays a fundamental
role later in the highest-weight representation theory of Kac-Moody alge-
bras. Furthermore, the Weyl groups of Kac-Moody algebras are introduced.
A certain classification of generalized Cartan matrices is given. Real and
imaginary roots are defined and characterized.

Among Kac-Moody algebras, the simplest infinite-dimensional algebras
are those of affine type, that is, the associated generalized Cartan matrices
are of co-rank one. In Chapter 2, we give a more detailed study on affine
Kac-Moody algebras. First we completely determine the roots and Weyl
groups of affine Kac-Moody algebras. Then we give loop algebra realizations
of untwisted affine Kac-Moody algebras. Furthermore, we realize twisted
affine Kac-Moody algebras as the subalgebras of untwisted affine Kac-Moody
algebras fixed by a certain automorphism.

Chapter 3 is to develop a general representation theory of Kac-Moody
algebras. First, we give a highest-weight representation theory for the Lie
algebra G(A). The defining relations of the Kac-Moody algebra associated
with a symmetrizable generalized Cartan matrix is then proved by using
the highest-weight representation theory. Moreover, we derive the character
formulas of integrable highest-weight irreducible modules of the Kac-Moody
algebras associated with symmetrizable generalized Cartan matrices. The
denominator identity and g-dimension formula are also given. Furthermore,
we investigate the weights of integrable highest-weight irreducible modules
of Kac-Moody algebras. We find the necessary and sufficient condition for
highest-weight irreducible modules of Kac-Moody algebras to be unitary.
The actions of imaginary root vectors on highest-weight irreducible mod-
ules of Kac-Moody algebras are determined. We deduce some combinatorial
formulas from the denominator identity.

The root multiplicities and Weyl groups of Kac-Moody algebras are not
known in general except those of finite or afline type. In Chapter 4, first we
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show that the denominator identities imply Macdonald identities. Then we
characterize the weights of integrable highest-weight irreducible modules of
affine Kac-Moody algebras and prove some of their properties. The formal
characters are determined in terms of theta functions and g-dimensions of the
subspaces of imaginary root strings. Moreover, we show that the Virasoro
algebra naturally appears in derivations of the loop algebra realizations of
untwisted affine Kac-Moody algebras. The well-known Sugawara construc-
tion of the Virasoro algebra from the loop algebra realizations of untwisted
affine Kac-Moody algebras is presented. Furthermore, we give the well-known

“coset construction” introduced by Goddard, Kent and Olive [GKO1, GKO?2],
which is related to the string functions.

In Chapter 5, we show that the space spanned by the characters of in-
tegrable highest-weight irreducible modules of affine Kac-Moody algebras
at a given level is invariant under the modular transformations. Moreover,
the imaginary root string functions are modular forms. First, we introduce
Heisenberg groups and theta functions related to Laurentz integral linear
lattices. We define an action of Heisenberg groups on functions and use it
to characterize these theta functions. Then we discuss the modular trans-
formation properties of the theta functions. Moreover, we show that certain
specializations of the theta functions are modular forms. A generalization of |
the strange formula found by Freudenthal and de Vries is proved. Finally,
we apply the theory of theta functions to affine Kac-Moody algebras.

In Chapter 6, we use generating functions and bosonic, fermionic fields
to realize some integrable highest-weight irreducible representations of affine
Kac-Moody algebras. First, we present preliminaries in" calculus of formal
variables, and generating functions for affine Kac-Moody algebras and the
Virasoro algebra. Then vertex operator representations of affine Kac-Moody
algebras are given. Moreover, we give free fermionic field realizations of
certain modules of the general linear and orthogonal affine algebras. The
well-known “Boson-Fermion correspondence” in physics is given, and its con-
nection with integrable systems is presented. As an application, we give the
vertex operator realizations of the level-one representations of the afline al-

gebra of type Bél).

Finally, we list some important open problems in the theory of Kac-
Moody algebras:

(1) Find the generating functions of the imaginary root multiplicities of
Kac-Moody algebras of indefinite type.

(2) Find the singular vectors (or highest-weight vectors ) in the Verma
modules of Kac-Moody algebras, where the highest weight may not be dom-
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inant integral.

(3) Find the string functions of integrable highest-weight modules of affine
Kac-Moody algebras.
(4) Find asymptotic formula for the ¢g-dimensions of integrable highest-

weight modules of Kac-Moody algebras and related partition functions such
as Kostant functions.



Chapter 1
Structure of Kac-Moody Algebras

In this chapter, we give the basic settings of Kac-Moody algebras and study
their structures. In Section 1.1, we introduce the Lie algebra G(A) associated
with any square matrix without zero rows and columns. This more general
setting will be used later to prove the Chevalley’s relations on generators of
Kac-Moody algebras. A nondegenerate invariant bilinear form of the Lie al-
gebra G(A) is constructed in Section 1.2 when A is symmetrizable. Moreover,
we introduce a generalized Casimir operator in Section 1.3. The Weyl group
for a Kac-Moody algebra is introduced in Section 1.4. Section 1.5 is devoted
to a certain classification of generalized Cartan matrices. Finally in Section
1.6, real and imaginary roots are defined and characterized.

1.1 Lie Algebra Associated with a Matrix

In this section, we will introduce the Lie algebra associated with any square
matrix and study its basic properties.

Let V be a vector space and let V* be its dual (the space of linear functions
on V). Throughout this book, we will use the notation:

(A u) = (u, Ay = A(u) for Ae VY, ueV (1.1.1)

and the index set |
i, ={i,i+1,---,7} (1.1.2)
for any two integers ¢, 7 with ¢ < 7.
Suppose that A = (a; j)nxn 18 an n X n matrix of rank £ without zero

rows and columns. After re-indexing if necessary, we assume that first £ rows
are linearly independent. Denote by Iy the k x k identity matrix. Write

A= ( 2 ) | | (1.1.3)

where A is an ¢ X n matrix of rank £. Consider

(A O
C = ( o IR_E). (1.1.4)



1.1 Lie Algebra Associated with a Matrix 0

Take |
H = C?"* the row space, (1.1.5)
1T = {ay,as, - ,a,} to be the first n coordinate functions of H and IIY =
{af,ay, -+ 0.} to be rows of C. Then both Il and IV are linearly inde-
pendent, and
ai ;= (), a;) for 1,7 € 1,n. (1.1.6)
The triple (H,II,ITV) is called a realization of A.
Set . N
Q=) Za;, Qi=) Zio (1.1.7)
i=1 i=1
Denote _ .
hta=)» k  for a=)» kai€Q. (1.1.8)
i=1 i=1

Moreover, we define a partial ordering > on () by

a<B ifB-—acq.. (1.1.9)

Define G(A) to be a Lie algebra generated by {e;, f; | i € 1I,n} and H
with the defining relations:

[6@, fj] — 5?;,3'(1:}/, [h, h"] — 0, (1.1.10)

[h’aei] — <aia h)ﬁi, [h’: f%] - _<a'ia h>f% (1111)

for 3,57 € 1,n and h,h’ € H. Let V be the tensor algebra on a vector space
with a basis {vy,ve,--- ,vn}. For convenience, we simply denote

Vi, @ - @y, = Vg -+ Vs, (1.1.12)

Given A € H*, we define an action of G(4) on V by

T

h(1) = (), b1, h('uil---'v,i,,)z((Ajh)—Z(aisjh))vil---vir, (1.1.13)

s=1

fi(u) = vju, e;(1) = 0, e;(vi) = &; (A, ) and

T
ei(viy -+ i) = vi,e(Viy 05, ) + 0y ((A,a}’) — Za‘j?is)’viz ey (1.1.14)
§=2

forhe H ueVand j€1,n.



