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Preface

A partial differential relation R is any condition imposed on the partial
derivatives of an unknown function. A solution of R is any function which
satisfies this relation.

The classical partial differential relations, mostly rooted in Physics, are usu-
ally described by (systems of) equations. Moreover, the corresponding sys-
tems of equations are mostly determined: the number of unknown functions
is equal to the number of equations. Given appropriate boundary condi-
tions, such a differential relation usually has a unique solution. In some
cases this solution can be found using certain analytical methods (potential
theory, Fourier method and so on).

In differential geometry and topology one often deals with systems of partial
differential equations, as well as partial differential inequalities, which have
infinitely many solutions whatever boundary conditions are imposed. More-
over, sometimes solutions of these differential relations are C%-dense in the
corresponding space of functions or mappings. The systems of differential
equations in question are usually (but not necessarily) underdetermined. We
discuss in this book homotopical methods for solving this kind of differen-
tial relations. Any differential relation has an underlying algebraic relation
which one gets by substituting derivatives by new independent variables. A
solution of the corresponding algebraic relation is called a formal solution of
the original differential relation R. Its existence is a necessary condition for
the solvability of R, and it is a natural starting point for exploring R. Then
one can try to deform the formal solution into a genuine solution. We say
that the h-principle holds for a differential relation R if any formal solution
of R can be deformed into a genuine solution.

XV



xvi Preface

The notion of h-principle (under the name “w.h.e.-principle”) first appeared
in [Gr71] and [GET71]. The term “h-principle” was introduced and pop-
ularized by M. Gromov in his book [Gr86]. The h-principle for solutions
of partial differential relations exposed the soft/hard (or flexible/rigid) di-
chotomy for the problems formulated in terms of derivatives: a particular
analytical problem is “soft” or “abides by the h-principle” if its solvability
is determined by some underlying algebraic or geometric data. The softness
phenomena was first discovered in the fifties by J. Nash [Na54] for isometric
C'-immersions, and by S. Smale [Sm58, Sm59] for differential immersions.
However, instances of soft problems appeared earlier (e.g. H. Whitney's pa-
per [Wh37]). In the sixties several new geometrically interesting examples
of soft problems were discovered by M. Hirsch, V. Poénaru, A. Phillips, S.
Feit and other authors (see [Hi59], [P0o66], [Ph67], [Fe69]). In his disser-
tation [Gr69], in the paper [Gr73] and later in his book [Gr86], Gromov
transformed Smale’s and Nash’s ideas into two powerful general methods
for solving partial differential relations: continuous sheaves (or the covering
homotopy) method and the convez integration method. The third method,
called removal of singularities, was first introduced and explored in [GET1].

There is an opinion that “the h-principle is the hardest part of Gromov’s
work to popularize” (see [Be00]). We have written our book in order to im-
prove the situation. We consider here two geometrical methods: holonomic
approzimation, which is a version of the method of continuous sheaves, and
convex integration. We do not pretend to cover here the content of Gro-
mov’s book [Gr86], but rather want to prepare and motivate the reader to
look for hidden treasures there. On the other hand, the reader interested
in applications will find that with a few notable exceptions (e.g. Lohkamp’s
theory [Lo95] of negative Ricci curvature and Donaldson’s theory [Do96|
of approximately holomorphic sections) most instances of the h-principle
which are known today can be treated by the methods considered in the
present book.

The first three parts of the book are devoted to a quite general theorem
about holonomic approximation of sections of jet-bundles and its applica-
tions. Given an arbitrary submanifold V; C V' of positive codimension, the
Holonomic Approximation Theorem allows us to solve any open differen-
tial relations R near a slightly perturbed submanifold Vj = h(V) where
h:V — V is a C%small diffeomorphism. Gromov’s h-principle for open
Diff V-invariant differential relations on open manifolds, his directed embed-
ding theorem, as well as some other results in the spirit of the h-principle
are immediate corollaries of the Holonomic Approximation Theorem.



Preface xvii

The method for proving the h-principle based on the Holonomic Approx-
imation Theorem works well for open manifolds. Applications to closed
manifolds require an additional trick, called microextension. It was first
used by M. Hirsch in [Hi59]. The holonomic approximation method also
works well for differential relations which are not open, but microflexible.
The most interesting applications of this type come from Symplectic Geom-
etry. These applications are discussed in the third part of the book. For
convenience of the reader the basic notions of Symplectic Geometry are also
reviewed in that part of the book.

The fourth part of the book is devoted to convex integration theory. Gro-
mov's convex integration theory was treated in great detail by D. Spring
in [Sp98]. In our exposition of convex integration we pursue a different
goal. Rather than considering the sophisticated advanced version of convex
integration presented in [Gr86], we explore only its simple version for first
order differential relations, similar to the first exposition of the theory by
Gromov in [Gr73]. Nevertheless, we prove here practically all the most
interesting corollaries of the theory, including the Nash-Kuiper theorem on
Cl-isometric embeddings.

Let us list here some available books and survey papers about the h-principle.
Besides Gromov's book [Gr86], these are: Spring’s book [Sp98], Adachi’s
book [Ad93], Haefliger’s paper [Ha71], Poénaru’s paper [Po71] and, most
recently, Geiges’ notes [Ge01].

Acknowledgements. The book was partially written while the second
author visited the Department of Mathematics of Stanford University, and
the first author visited the Mathematical Institute of Leiden University and
the Institute for Advanced Study at Princeton. The authors thank the host
institutions for their hospitality. While writing this book the authors were
partially supported by the National Science Foundation. The first author
also acknowledges the support of The Veblen Fund during his stay at the
IAS.

We are indebted to Ana Cannas da Silva, Hansjorg Geiges, Simon Gober-
stein, Dusa McDuff and David Spring who read the preliminary version of
this book and corrected numerous misprints and mistakes. We are very
thankful to all the mathematicians who communicated to us their critical
remarks and suggestions.
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<« Examples

A. Immersions. A smooth map f:V — W of an n-dimensional manifold
V into a g-dimensional manifold W, n < ¢, is called an immersion if its
differential has the maximal rank n at every point. Two immersions are
called regularly homotopic if one can be deformed to the other through a
smooth family of immersions.

A1l. For an immersion f : S' — R? we denote by G(f) its tangential
degree, i.e. the degree of the corresponding Gaussian map S* — S'. Then
two immersions f,g : S — R? are reqularly homotopic if and only if G(f) =
G(g), see [Wh37] and Section 6.1 below.

A2. On the other hand, any two immersions S> — R3 are regularly ho-
motopic, see [Sm58] and Section 4.2 below. In particular, the standard
2-sphere in R? can be inverted outside in through a family of immersions.

A3. Consider now pairs of immersions (fo, f1) : D?> — R? which coincide
near the boundary circle dD?. What is the classification of such pairs up
to the regular homotopy in this class? The answer turns out to be quite
unexpected:

There are precisely two regular homotopy classes of such pairs. One is rep-
resented by the pair (j,7) where j is the inclusion D? < R?, the second one
is represented by the pair (f,g) where the immersions f and g are shown in
Fig. 0.2. See [E172].

B. Isometric C'-immersions. Is there a regular homotopy f; : 2 — R3
which begins with the inclusion fy of the unit sphere and ends with an
isometric immersion f; into the ball of radius %? Here the word ‘isometric’
means preserving length of all curves. The answer is, of course, negative if f;
is required to be C?-smooth. Indeed, in this case the Gaussian curvature of

1



2 Intrigue

Figure 0.2. The immersions f and g.

the metric on S? should be > 4 at least somewhere. However, surprisingly,
the answer is “yes” in the case of C'-immersions (when the curvature is not
defined but the curve length is), see [Na54, Ku55| and Chapter 21 below.

C. Mappings with a prescribed Jacobian. Let ) be an n-form on
a closed oriented stably parallelizable n-dimensional manifold M such that
f Q =0, and let

M

n=dry A ANdxy

be the standard volume form on R™. Then there exists a map f: M — R"
such that f*n = Q. See [GET73]. »

All the above statements are examples of the homotopy principle, or the
h-principle. Despite the fact that all these problems are asking for the solu-
tion of certain differential equations or inequalities, they can be reduced to
problems of a pure homotopy-theoretic nature which then can be dealt with
using the methods of Algebraic topology. For instance, the regular homotopy
classification of immersions S? — R3 can be reduced to the computation of
the homotopy group m(RP?), which is trivial.

We are teaching in this book how to deal with these problems. In particular,
two general methods which we describe here will be sufficient to handle all
the above examples, except A3 and C. In our sequel book, “The h-Principle
and Singularities”, we will discuss other methods which prove, in particular,
the two remaining results.

Another, maybe even more important, goal of this book is to teach the
reader how to recognize the problems which may satisfy the h-principle. Of
course, in the most interesting cases this is a very difficult question. As
we will see below there are plenty of open problems where one neither can
establish the h-principle, nor find a single instance of rigidity. Nevertheless



