Logics of Programs

Edited by
Clarke Edmund and Dexter Kozen

I

i 3
B
%
-4
i
A3
k2

j

1

3

]

Lecture Notes in
Computer Science -

Edited by G. Goos and J. Hartmanis

164

Logics of Programs /

Workshop, Carnegie Mellon University
Pittsburgh, PA, June 6-8, 1983

Edited by Edmund Clarke and Dexter Kozen

SpringerVerlag
Berlin Heidelberg New York Tokyo 1984

Editorial Board
D. Barstow W.Brauer P.Brinch Hansen D. Gries D. Luckham
C. Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth

Editors

Edmund Clarke
Computer Science Department, Carnegie Mellon University
Pittsburgh, PA 15213 USA

Dexter Kozen
IBM Research
Box 218, Yorktown Heights, NY 105698 USA

AMS Subject Classifications (1980): 68C01, 68B10, 68B15, 03B45,
03D45

CR Subject Classifications (1982): F3, F4.1, B.2.2, B.6.3, D.2.4

ISBN 3-540-12896-4 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-12896-4 Springer-Verlag New York Heidelberg Berlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
. is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,

reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is

payable to “Verwertungsgeselischaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1984
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

£ N m

FOREWORD

Logics of Programs, as a field of study, touches on a wide variety of activities
in computer science and mathematics. It draws on mathematical foundations of formal
logic, semantics, and complexity theory, and finds practical application in the areas
of program specification, verification, and programming language design. The Logics
of Programs Workshop was conceived as a forum for the informal sharing of problems,
results, techniques, and new applications in these areas, with special emphasis on
bridging whatever abyss may exist between the theoreticians and the pragmatists.

The workshop was held on June 6-8, 1983 at Carnegie Mellon University. It was the
fourth in an unofficial series, which started in 1979 with the workshop in Ziirich
organized by Erwin Engeler, and continued with the 1980 Poznan workshop organized by
Andrzej Salwicki and the 1981 Yorktown Heights workshop organized by Dexter Kozen.
Since the 1979 workshop, interest and participation hLas grown precipitiously: the

.CMU workshop drew 59 registered participants from 8 countries, as well as many
unregistered participants. 38 technical papers were presented, representing the
entire spectrum of activity in Logics of Programs from model theory to languages for
the design of digital circuits. The contributions of the workshop participants
appearing in this volume are unrefereed and are to be considered working papers.

The workshop was held in cooperation with the Association for Computing Machinery,
and was made possible through the generous support of the National Science

Foundation1 and the Office of Naval Research2 We wish to thank all who helped with
the organization of the workshop and preparation of the proceedings, especially John
Cherniavsky, Robert Grafton, Magdalena Milller, and Nancy Perry.

' Edmund Clarke
Dexter Kozen
Sept. 1, 1983

lgrant MCS-8303082
zgtant N00014-83-G-0079

CONTENTS

Rrzysztof R. APT
A Static Analysis of CSP Programs Cesereseesaeanas Creeesanen R |

J.W. de BAKKER, J.I. ZUCKER
Compactness in Semantics for Merge and Fair Merge vecaesanans ceriesseeann 18

J.A. BERGSTRA, J.W. KLOP, J.V. TUCKER
Algebraic Tools for System Construction e teeeeetie ettt et 34

J.A. BERGSTRA, J. TIURYN
PC-Compactness, a Necessary Condition for the Existence of Sound and Complete logics
of Partial Correctnessciveerenneennnsennnnnas creccns ceciesceacsencesaans 45

Howard A. BLAIR
The Intractability of Validity in Logic Programming and Dynamic Logic 57

Stephen D. BROOKES
A Semantics and Proof System for Communicating Processes Ceceseresanesansaans 68

Robert CARTWRIGHT
Non-Standard Fixed Points in First Order Logicvvvviinvinnnnnnennnnonennnnnns 86

E. CLARKE, B. MISHRA
Automatic Verification of Asynchronous Circuitscceueveeeenurmnnnnnnnnnn. 101

R.L. CONSTABLE
Mathematics as Programming ceveons Ceteetiecsteaerasoenasens 116

Ch. CRASEMANN, H. LANGMAACK
Characterization of Acceptable by ALGOL-Like Programming Languages veee...129

Flaviu CRISTIAN
A Rigorous Approach to Fault-Tolerant System Development (Extended Abstract)147

Werner DAMM, Bernhard JOSKO

A Sound and Relatively* Complete Axiomatization of Clarke's Language L cees..161

PETERE
E. Allen EMERSON, A. Prasad SISTIA
Deciding Branching Time Logic: A Triple Exponential Decision Procedure for CTL* ..176

Erwin ENGELER
Equations in Combinatory Algebras eeieseaseeeena Ceriesaan e ...193

S. M. GERMAN, E. M. CLARKE, J. Y. HALPERY .
Reasoning About Procedures as Parameters Ceeeetrsaenan Ceeeraseesanenan vev..206

J.A. GOGUEN, R.M. BURSTALL
Introducing Institutions g etesorennnnanenns ceeaen cesescesenan tesessnenns 221

Orna GRUMBERG, Nissim FRANCEZ, Shmuel KATZ
A Complete Proof Rule for Strong Equifair Terminationoeeoomnomnnnn.. 257

3

A.J. KFOURY, P. URZYCZYN
Necessary and Sufficient Conditions for the Universality of Programming Formalisms

(Partial Report)c.iiivinnrnnnnnn e rerear e Ceeeeen e eeeeceea e 279
Tmima KGREN, Amir PNUELI

There Exist Decidable Context Free Propositional Dynamic Logics 2 11]
Dexter KOZEN, Rohit PARIKH

A Decision Procedure for the Propositional u-Calculus e teereceeaa. 313
B.D. LUBACHEVSKY

A Verifier for Compact Parallel Coordination Programs cecieacrcccericrannne 326
Charles McCARTY

Information Systems, Continuity and Realizability BT Cesecesanan 341
John McLEAN

A Complete System of Temporal Logic for Specification Schemata ssertascean 360

Ben MOSZKOWSKI, Zohar MANNA
Reasoning in Interval Temporal Logic Ceeteeccecesnectaaceassasaseeransassssnn 371

Ernst-Rudiger OLDEROG
Hoare's Logic for Programs with Procedures -- What Has Been Achieved? 383

Rohit PARIKH, Anne MAHONEY
A Theory of Probabilistic Programsciuiiniiiiiiiniiiinninennennesennnas 396

David A. PLAISTED
A Low Level Language for Obtaining Decision Procedures for Classes of Temporal Logics

..................................... D U ¢ X]
John H. REIF, William L. SCHERLIS
Deriving Efficient Graph Algorithms (Summary) N 421
John C. REYNOLDS
An Introduction to Specification Logicc..o.... P 7V

Richard L. SCHWARTZ, P.M. MELLIAR-SMITH, Friedrich H. VOGT
An Interval-Based lemporal Logic e AP Y5

Joseph SIFAKIS
Property Preserving Homomorxphisms of Transition Systemsv...ceeeue....458

B.A. TRAKHTENBROT, Joseph Y. HALPERN, Albert R. MEYER
From Denotational to Operational and Axiomatic Semantics for ALGOL-like Languages: an
OVeIVIeWoiitiititiesnrnronnrnnensnennsnnns e Cerenaes seesresccsssessoann 474

Moshe Y. VARDI, Pierre WOLPER
Yet Another Process Logic (Preliminary Version)ceeeveeinvonnnnnnannnnn 501

Job ZWIERS, Arie de BRUIN, Willem Paul de ROEVER
A Proof System for Partial Correctness of Dynamic. Networks of Processes (Extended
AbSEract) ...ttt ittt ittt it LT et ceenean veeeen513

A STATIC ANALYSIS OF CSP PROGRAMS
Krzysztof R. APT

LITP, Université Paris 7
‘2, Place Jussieu
75251 PARIS

France

Abstract A static analysis is proposed as a method of reducirg complexit. of the
correctness proofs of CSP programs. This analysis is based on c.nsiderinas .,11 possi-
ble sequences of communications which can arise in computatiuns during waich the
boolean éuards are not interpreted. Several examples are provided which clarify its

various aspects.

1. INTRODUCTION

Correctness proofs of concurrent and distributed programs are complicated
beécause in general they are of the length propoftiunal to the product of the lengths
of the component programs. We claim in this paper that in the case of the CSP pro-
grams the length and the complexity of these proofs can be substantially reduced
by carrying out first a preliminary static analysis of the programs. This analysis
allows to reduce the number of cases which have to be considered at the level of

interaction between the proofs of the component programs.

The analysis is quite straightforward and contains hardly any new ideas. It
is based on considering all possible sequences of communications which can arise
in computations during which the boolean guards are not interpreted. In this respect

it bears a strong resemblance to the trace model for a version of CSP given in [H 1].

We apply this analysis to three types of problems. The first one consists of
determining which pairs of input-output commands (i/0 commands) may be synchronized
during properly terminating computations. The second one consists of determining
all possible configurations in which deadlock occurs, Finally we provide a suffi-
cient condition for safety of a decomposition of CSP programs into communication-
closed layers, a method of decomposition which has been recently proposed by

Elred and Francez [EFJ].

A similar analysis can be carried out for other programming languages which
use rendez-vous as a sole means for communication and synchronization. In fact
while writing this paper we encountered in the last issue of the Communications of

ACM a paper by Taylor [T] in which such an analysis is carried out for ADA programs.

The only difference is in the presentation of this approach. R.N. Taylor presents

an algorithm which computes all rendez-vous which may take place during exscution

of a program and all configurations in which deadlock may arise. His algorithm is
also capable of determining which actions may occur in parallel. We on the other hand
present the analysis in a formal language theory framework providing the rigorous
definitions which can be used in the case of concrete examples. We also link this
@nalysis with a subsequent stage being the task of proving correctness of ths

programs.

The paper is organized as follows. In ths,next section we introduce the
basic definitions. In section 3 we provide three applications already mentioned
above. Section 4 is devoted to a more refined analysis which takes into account
the problem of termination of the repetitive commands. Finally in section 5 a number

of conclusions is presented.

2. BASIC DEFINITIONS

We assume that the reader is familiar with the original article of Hoare [H].
Throughout the paper we oconsider programs written in a subset of CSP. We
disallow nested parallel composition, assume that all variables are of the same
type and consequently omit all the declarations. Additionally we allow output
commands to be used as guards. For the reasons which will become clear latsr we

label each occurence of an input or output command by a unique label.

By a parallel program we mean a program of the form P, 1 ... P where
1 n

each Pi is a process. For simplicity we drop the process labels. So according to
the notation of [H] each process is identified with thecommand representing its
body. The name of the process can be uniguely determined from the position of the

command within the parallel composition.

The analysis carried out here can be straightforwardly extended to the
full CSP. '

Throughout the papsr we denote by S,T arbitrary (seguential) commands, by
g guards, by b,c boolean expressions, by t expressions and by a,8 i/o
commands. Lab%ls of the i/o0 commands are denoted by the letters k,1,m. Finally,

we write [191 g 31] instead of [g1 + S, g...0 g, > SmJ.

Consider now a parallel program P1|...|Pn. We proceed in two stages.

1°) With sach process Pi we assoclate a regular language L[Pi] defined by

structural induction. We put

L(x:=¢) = L{skip) = {e},

L[l:PJlt) = {1 : <1,3>},

L[l:PJ?x) = {1 : <3,1>)},

L(S1:321 = L(S11L(32].
L(g » S) = L(glL(8),
Lb) = {e}, L(bsl:a) = L(bIL(1:a} (=L{2:a)),
m m
LC 101 g!. -+ Si] = 1U1 L(gi hd si)'
m m
¥ *
L[*[ig1 gy 81]] =L O g 31])
i=1
Note that L[Pil is the set of all a priori possible communication sequen-
ces of P1 when the boolean guards are not interpreted. Each communication sequence
consists of elements of the form 1:<i,j> or 1:<j,i> where 1 d4s a label of an
i/0 command uniquely identified and <i,j> (<j,i>) records that fact that this

i/0 command stands for a communication from Pi[PJ) to PJ(Pil.

It is important that we associate with assignment and skip statements the
set {e} and not the empty language @. Otherwise not all communication sequences
would be recorded in L(Pi]. The following example clarifies this issue.

Example 1
Let

P1 = [b1 + skip O b, + k:lex] 3
*[I:Pz?y * e 3 m:ley]
where ... stands for a "private part” of P1. i.e. a command not involving any i/o0
commands. Then
LP) = {(1:<2,1>) (mi<1,25)}"

v {k:<1,2> H(1:<2,1>) (m:<1,25)}*
If we associated with skip the empty language then the first part of L(P1)

would not be present even though it represents possible communication sequences.

2°) We associate with P1|"’.Pn & regular language L[P1|...|Pn]. Its
" lettars are of the form k,1:<1,j> standing for an instance of a communication

labeled by k and the input command of Pj

between the output command of P
labeled by 1.

i

First we define a prejection function [']i (1s1sn} from the alphabet of
L(P1|...|Pn] into the alphabet of L(PiJ. We put :

[k.1=<1.3>]1 = Ki<i, 3>
[k.1:<i.J>]J = 1:<i,3>
[k.1:<i.j>]h= e if h# 1,3

and naturally extend it to a homomorphism from the set of words of L(P1|...|Pn]
into the set of words of L(Pi).

We now define
L(P1|...|Pn] = {h:[h]i e LP), 1= 1,...,0}

Intuitively, t(P1|...|Pn] is the set of all possible communication sequen-
ces of P1|...|Pn which can arise in properly terminating computations during

which the boolean expressions are not interpreted.
3. APPLICATIONS

1. Partial correctness

Given a parallel program P1|...|Pn we define

STAT = {(k:a, 1,B) : k:a 1is from Py 1:8 1is from Pj‘
& dh Ja [h € L(P1|...|Pn]. a 1is an element of h,

L(k:a) = {[a]i} and L(1:B) = {[a]j}}.

Intuitively STAT (standing for static match) is the set of all pairs of

i/0 commands which can be synchronized during a properly terminating computation of

P1I"'|Pn which ignores the bonlean guards.

‘

The set STAT should be compared with two other sets of pairs of i/o commands :

SYNT = {(k:a, 1:B) : k:a is from Pi' 1:8 1is from Pj and k:a
and 1:B address each other (match)}
SEM = {(k:a, 1:B) : in some "real” properly terminating computation

of P1|...|Pn k:x and 1:B are synchronized}.

In the proof systems of [AFR] and [LG] dealing with partial correctness of
CSP programs the crucial proof rule is the one that deals with the parallel composi-
tion of the processes. First one introduces so called proof outlines for component
processes. A proof outline of S is a special form of a proof of partial correct-
ness of the program S in which each subprogram of S is preceded and succeded by
an assertion. These assertions are supposed to hold at the moment when the control
is at the point to which they are attached. As behaviour of each component process
depends on the other processes we ensure the above property by comparing proof out-
lines of the component processes. Given a proof outline the only assertions which
have to be justifiedﬁusing proof outlings ot other processes are those succeeding

the i/0 commands.

Thus one identifies all pairs of possibly matching i/0 commands and checks
that the assertions attached to them are indeed justified when the communication
takes place. This part of verification of the proof outlines is called in [AFR] the
cooperation test and in [LG] the satisfaction test.

If the proof outlines satisfy the test then one can pass to the conclusion

stating partial correctness of the parallel program.

We now concentrate on the step consisting of identifying all pairs of possibly
matching i/0 commands. chording to our definition this is the set SEM. But since
SEM 1s in general not computahle as a function of the program P1|...|Pn, this set
is replaced in (AFR] and [LG] by a larger set SYNT being cbviocusly computable. We
propose to replace in this analysis the set SEM by the set STAT.

Note that the following clearly holds.
Fact SEM < STAT c SYNT

Moreover, the set STAT is obvicusly computable. Using the set STAT instead
of SYNT as an "approximation” for SEM is more economical as less checks in the
cooperation (satisfaction) test phase are then needed. Also the proof outlines (and
in the case of [AFR] - the global invariant) can be simplified.

As an illustration of the difference between the sets STAT and SYNT consi-
der the following example : '

Example 2
Let
P1 = k1:P2?x :...;kz:lez Jeoees
*[b1 Fieas k3:P2?x Seaas k4:Pé!z 3eesd,
PZ.E 11:P1ly Feans 12:P1?u Feeas
*[b2 * i 13:P1ly Feeod 14:P1?u 5eedld
Then '
STAT = {(k,:a,, 1,:8,) : 1 <154}
and
SYNT = {(k,:a,, 1,:8,) ¢ {i-31 is even, 1 < 1,3 < 4},

Thus STAT has here 4 elements whereas SYNT has 8 elements.

The difference between STAT and SYNT becomes more evident for longer pro-
grams. For example if in the above programs both repetitive commands contained 2k
instead of two alternating i/o commands in succession then STAT would contain
2(k+1) elements whereas SYNT would contain 2{k+1)2 elements.

It is important 'to note that the set STAT consists of pairs of i/0 commands
which can be synchronized during a properly terminating computation. The following

two examples clarify this issue.

Example 3
’ Let

T
in

e k1:P

?X 30ee s

1

= . 1 N . s
P, = ...3 11.P2.y Seoos 12.P21u Seee

Then L(P,) = {k1:<2.1>} and L(P,) = {(11;<2.1>)(12:<2.1>)} so L(P1|P2] = Q.

Thus STAT = @ even*though the i/o commands labelled by k1 and 11, respectively
can be synchronized. On the other hand, since L[P1|P2) = @, there does not exist
a properly terminating computation of P1|P2. Indeed, for any properly terminating
computation the sequence consisting of its consecutive communications belongs

to L(P1|P21.

Example 4
Let
Py Elb,»... D0 b, » ... kqtPy?xs. sk, P, 1x],
P, = [c1 +> ... 0 Cp > ven s 11:P1ly;...x12:P1ly].

Then L(P,) = {e¢, (k1:<2.1>](k2:<1,2>]} and L(Pz) = {e, (1,:<2,1>)
(12:<2,1>1} 80 L(P1|P2) = {€}. Thus STAT = P. The i/o commands labeled by Ky

and 11, respectively can be synchronized but not during a properly terminating

computation.
The situation when L(P1|...|Pn)= P should be compared with the situation
when L(P1|...|Pn1 = {€}. In the first case no properly terminating computation of

P1|...|Pn exists. In the latter case the properly terminating computations of

P1|...|Pn can exist but in none of them a communication will take place.

In both cases STAT = @ so no cooperation (resp. satisfaction) test will
take place in the proof rule dealing with parallel composition. This is in accor-
dance with the fact that partial correctness of programs refers to properly termi-
nating computations only, In both cases above no communication will take place in

any such computation.

Finally we consider the following example :

Example 5

Let

Py

Py = #[1 Pty > ...] 5 1,:P 7z,

Then STAT = SYNT = {(ki:ai, 11:811 : 1=1,2}. Note however that the communi-
cation between the i/c commands with labels Kk and 1,, respectively cannot take

2 2
place as none of the repetitive commands can terminate. In particular no computa-

P 2 .
*[k1.P2.x S k2.P2lu.

tiop of P1|P2 terminates. The tools used su far do not allow us to deduce thess

facts formally. We shall return to this problem later.

2. Proofs of deadlock freedom

In the proof systemeof [AFR] and [LG] one proves deadlock freedom of the
parallel programs by identifying first the set of blocked configurations, i.e. the

vectors of control points corresponding to a deadlock. Then for each blosked confi-
guration one shows that %he conjunction of the assertions attached to ths corres-
ponding control points {and the global invariant in the case of [AFR]) 1s inconsis-
tent. Thus the length of the proof of deadlock freedom is proportional to the num-

ber of blocked configurations.

We now suggest a more restricted definition of a blocked configuration
which is sufficient for proofs of deadlock freedom and results in shorter proofs.
The control points which are of interest here are those when the control resides in
front of an i/o command or at the end of a process. With each control point of the
first type we associate a set of i/0 commands which can be at this point executed.
With the control point of the second type we associate the set {end Pi} corres-
ponding to the situation when the control is at the end of the procaess Pi'
We define

Clk:a) = {{k:a}}

where k:a occurs in the process as an atomic command,

citb, +s, 0...0b S Dkyzap +s 0...0KkK @ +ksm,n 0B e 1 Kne 1 7 %a ™

1
Smenaq O ore Obp pskp pia Smenepl) “{A:A = {kj:; ¢ 121,00} v B
where “P R U i=;.....p}}, where m 2 0 and n+p 2 1,
Cix[O g, »s, W =cll D g, +sN.
1= 11 1= 10

For other type of commands S C(S) 1s not defined. Note that a typical set
A considered above consists of all i/o guards which occur without the boolean guards
together with a subset of those i/0 guards which occur with a boolean guard.

Given now a process P1 we define C[PiJ to be the union of all sets
C(S) for S being a subprogram of P, together with the element {end Pi}' Each

slement of C[Pi) corresponds to a unigue control point within Pi‘

The identification of all blocked configurations depends on the fact whether

30 called distributed termination convention (d.t.c) of the repetitive commands is

taken taken into account. According to this convention a repetitive command can be exi-
ted when all processes addressed in the guards with boolean part true have termina-
ted. This convention corresponds.to the following definition of a guard being failed :
a guard fails 1if either its boolean part evaluates to fEEEE or the process addressed
in its 1/0 part has terminated. A repetitive command is exited when all its guards
fail. If ip the definition of a failure of a guard we drop the second alternative

we obtain the usual termination convention of the repetitive commands. In [H] the

distributed termination convention is adopted.
Consider first the simpler case when the usual termination convention is

used.
A triple <A1""'An> from C(P1)x...xC(Pn] is called blocked if

1) 31 A7 {end P}
(not all processes have terminated)

i1) (VU Ai x A) n SYNT = B
143 J
(no communication can take place)

Alternatively 1i) can be stated as : no pairs of elements from A1 and Aj

(i#j) match. The notion of a blocked tuple is from [AFR].

Let Init(t) for a formal language L denote its left factor i.e. the set
{u: 3 wluw € L)}. We now put

LP[P1I...“PHJ = {h : [hl; e Init(L(P,)), 1=1,...,n}.

Intuitively, LP[P1|...|PnJ is the set of all possible communication sequen-
ces of P1H...|Pn which can arise in partial computations during which the boolean

guards are not interpreted.

We now say that a tuple <A1""'An> from C(P1)x...xC(PnJ is statically

blocked 1f

1) it is blocked
ii) 3 h e LP(P1|...IPnJ Vi

(A # {end Py} =V d e A ([hLa e Init(L(P,)}) where L(d) = {a}
A Ay = {end P} = [h] € L(P,)]

The second condition states that there exists a communication sequence which

reaches the vector of the control points associated with <A1""'An>' Reachability
is checked by considering the projections [h]i of the sequence h. If Ai #{end Pi}

then [h]ia for all a e {L(d):d € Ai} should be an initial part of a sequence
from L(PiJ. If Ay = {end Pi} then [h]i should be a sequence from L(PiJ.

If d.t.c. is used then we should add the following condition to the defini-
|

tion of a blocked triple

111) For no 1 ,1,,...,i, from {1,...,n}, where ij A1, for §#1:

AT {end Py } and the processes addressed in the i/o commands of Ay are all
3 3 ' o
among {P, ,...,P, }.
i1 ik
This condition states that no exit can take place due to the distributed

termination convention. Thus the sst Ai should correspond to a repetitive command.
o .

We denote the set of all statically blocked tuples by STATB and the set
of all blocked tuples by SYNTB.

We now consider a couple of examples.

Example &

Consider the processes P1 and P2 from the example 2. 0O.t.c. cannot be

used here., It is easy to see that

SYNTB

{<lky oyl {1J:Bj}> : |i-j| is odd, 1 < 4,j < 4}
{<{k:0.), {end P}> : 1 <1< 4}
v {<lend P}, {1;:8,}> : 15554}

c

A

whereas

n

STATB {<{k3ga3}, {end p2}>,

<{end P1}. {13:83}>}
Thus SYNTB has 16 elements whereas STATB has only two elements.

Example 7

Let
P1 = ...;k1:P21x 3ases kz:Pz?z FII
*[b1 > k3:P2!x Teees k4:P2?z 5eeeds
P2 = 11:P1?y Seaes 12:P1u Seest
*[13:P1?y > e 14:P1!u Seeele

This is a structure of the program partitioning a set studied in [D] and

-

[AFR].
Consider first the case when the distributed termination convention is not

used. Then SYNTB and STATB are the same as in the previous example.
Suppuse now that d.t.c. is used. Then
SYNTB =" {<{k;:a}, {lj’83}> : li-j1 1s odd, 1 < i, < 4}

v {<{ki:a 3, {end P2]> : 1 <1< 4)

id!
v {<{end P1}. {1J:BJ}> : 3§ =1,2,4}

and

STATB {<{k3:a3}. {and P2}>}.
Here SYNTB has 15 elements whereas STATB only one. Note that the only sta-
ticly blocked pair cannot arise in actual computations either. The only way P2 can

terminate is due to the termination of P1. Thus if the control in P2 is at its

end then the same must hold for P We note that our analysis is not precise

1
enough 1in order to deal with this type of situations. The next example gives more

evidence to this effect.

Example 8

Let for i=1,....,n

= 1
Pi_' *[bi 3 Pi-1'x1 > ...

8] ci'Pi+1lxi >

y, >
0 Pi_1.y1 .
7z +
Pi+1'zi see

where the addition and substraction is modulo n.

This is a strucfure of the distributed gcd program considered in [AFR]. The

labels of i/o0 commands are omitted as they are not needed here.

We have in the case when d.t.c. is not used ‘B
SYNTB = {<A,.....,A > : 31 A # {end P,}
AV AP, ix; € A + A, = {end P, _,}
APlgtxg € AL Ajeq = {end Pi¢1}
?
A A # {end P} > Py 47y Pi+1.zi} < ATd

and

STATB = SYNTB.
Suppose now that d.t.c. is used. Then
SYNTB = {<Ap.....A>: 31 A, # {end P,}

AVAIP, ix; e Ay + A, = {end P, 3

X4 i-

i-1
APLglxy € Af*Aiq = {end P1'1}

AA F {end PLY > (P Ly, Piag?2) S Ay

AAy_, # {end Py} v A F {end Py 10)])

i+
and once again STATB = SYNTB.

We see that in this example all blocked tuples are statically possible. The
reason for it is that recording sequences of communications does not suffice to
distinguish between two control points : the beginning and the end of a repetitive
command.

On the other hand a simple informal argument allows to reduce the number of
blocked triples which can arise in actual ccmputations to one. The argument runs as

follows. Suppose that d.t.c. is not used. Then no process P can terminate. Assume

i
now that this convention is used. If some process Pi has terminated then by d.t.c.
his neighbours Pi-1 and Pi+1 must have terminated, as well. Thus no process can

terminate as the first one. In other words no process can terminate.

1

Thus in both cases a blocked tuple <A1.....An> with some A1 = {end Pi}

is not possible. This reduces the number of possible blocked tuples to one being

<AgsevesA > where for i = 1,....n Ap o= Py L7v,0P 72,0,

In the next section we propose a more refined analysis which leads to a more
restricted notion of static match and staticly blocked configurations. These notions
will allow to deal properly with the above examples.

3. Proofs of safety of a decomposition of programs into communication-closed layers

In a recent paper [EF] Elrad and Francez proposed a method of dscomposition
of CSP programs which simplifies their analysis and can be used for & systematic
construction of CSP programs. It is defined as follows.

Suppose that we deal with a parallel program P of the form P1""|Pn

where for all i=1,...,n Pi H SI Jesas S:. Some of the commands Si can be empty.

= oJ 3 - :
We call the parallel programs TJ H S1|...|Sn (J=1,...,k) the layers of P.

A layer T is called communication-closed if there does not exist a com-
putation of P 1in which a communication takes place between two i/o0 commands from
which éne liee within TJ and the other outside TJ. A decompoasition
T11...|T of P 1s called safe iff all the layers TJ are communication-closed.

k
In other words a decomposition T1""'Tk of P 1is safe if there does not‘exist a
computation of P with a communication involving two i/o0 commands from different

layers.

In [EF))also more general types of layers are considered whose boundaries
may cross the repetitive commands. Our analysis does not extend to such decomposi-
tions, The interest in considering safe decompositions stems from the following

observation.

Fact ([EF]) Suppose that T1;.;.:Tk is a safe decomposition of the parallel pro-
gram P, Then the programs T1x...1TK and P are input-output equivalent.

Proof (informal) Obviously every computation of T1;...1Tk is also a computation
of P. Consider now a properly terminating computation of P, Dues to safety of the
decomposition we can rearrange some steps of this computation so that it bsecomes a
properly terminating computation of T1""'Tk' Both computations terminate in the

same final state.
Thus both programs generate the same pairs of input-output states, n}

As an exampla of a safe decompoeition consider the following program
P = P1?x|P21y|P3?u|P4lz
Consider now the layers

T, 2 P1?x|P2y|A|A

