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Preface

Theoretical computer science is the mathematical study of models of
computation. As such, it originated in the 1930s, well before the existence
of modern computers, in the work of the logicians Church, Gédel, Kleene,
Post, and Turing. This early work has had a profound influence on the
practical and theoretical development of computer science. Not only has
the Turing machine model proved basic for theory, but the work of these
pioneers presaged many aspects of computational practice that are now
commonplace and whose intellectual antecedents are typically unknown to
users. Included among these are the existence in principle of all-purpose
(or universal) digital computers, the concept of a program as a list of
instructions in a formal language, the possibility of interpretive programs,
the duality between software and hardware, and the representation of
languages by formal structures, based on productions. While the spotlight
in computer science has tended to fall on the truly breathtaking technolog-
ical advances that have been taking place, important work in the founda-
tions of the subject has continued as well. It is our purpose in writing this
book to provide an introduction to the various aspects of theoretical
computer science for undergraduate and graduate students that is suffi-
ciently comprehensive that the professional literature of treatises and
research papers will become accessible to our readers.

We are dealing with a very young field that is still finding itself.
Computer scientists have by no means been unanimous in judging which
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parts of the subject will turn out to have enduring significance. In this
situation, fraught with peril for authors, we have attempted to select topics
that have already achieved a polished classic form, and that we believe will
play an important role in future research.

In this second edition, we have included new material on the subject of
programming language semantics, which we believe to be established as an
important topic in theoretical computer science. Some of the material on
computability theory that had been scattered in the first edition has been
brought together, and a few topics that were deemed to be of only
peripheral interest to our intended audience have been eliminated. Nu-
merous exercises have also been added. We were particularly pleased to be
able to include the answer to a question that had to be listed as open in
the first edition. Namely, we present Neil Immerman’s surprisingly
straightforward proof of the fact that the class of languages accepted by
linear bounded automata is closed under complementation.

We have assumed that many of our readers will have had little experi-
ence with mathematical proof, but that almost all of them have had
substantial programming experience. Thus the first chapter contains an
introduction to the use of proofs in mathematics in addition to the usual
explanation of terminology and notation. We then proceed to take advan-
tage of the reader’s background by developing computability theory in the
context of an extremely simple abstract programming language. By system-
atic use of a macro expansion technique, the surprising power of the
language is demonstrated. This culminates in a universal program, which is
written in all detail on a single page. By a series of simulations, we then
obtain the equivalence of various different formulations of computability,
including Turing’s. Our point of view with respect to these simulations is
that it should not be the reader’s responsibility, at this stage, to fill in the
details of vaguely sketched arguments, but rather that it is our responsibil-
ity as authors to arrange matters so that the simulations can be exhibited
simply, clearly, and completely.

This material, in various preliminary forms, has been used with under-
graduate and graduate students at New York University, Brooklyn College,
The Scuola Matematica Interuniversitaria—Perugia, The University of Cal-
ifornia—Berkeley, The University of California—Santa Barbara, Worcester
Polytechnic Institute, and Yale University.

Although it has been our practice to cover the material from the second
part of the book on formal languages after the first part, the chapters on
regular and on context-free languages can be read immediately after
Chapter 1. The Chomsky-Schiitzenberger representation theorem for con-
text-free languages in used to develop their relation to pushdown au-
tomata in a way that we believe is clarifying. Part 3 is an exposition of the
aspects of logic that we think are important for computer science and can
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also be read immediately following Chapter 1. Each of the chapters of Part
4 introduces an important theory of computational complexity, concluding
with the theory of NP-completeness. Part 5, which is new to the second
edition, uses recursion equations to expand upon the notion of computabil-
ity developed in Part 1, with an emphasis on the techniques of formal
semantics, both denotational and operational. Rooted in the early work of
Gddel, Herbrand, Kleene, and others, Part 5 introduces ideas from the
modern fields of functional programming languages, denotational seman-
tics, and term rewriting systems.

Because many of the chapters are independent of one another, this book
can be used in various ways. There is more than enough material for a
full-year course at the graduate level on theory of computation. We have
used the unstarred sections of Chapters 1-6 and Chapter 9 in a successful
one-semester junior-level course, Introduction to Theory of Computation,
at New York University. A course on finite automata and formal languages
could be based on Chapters 1, 9, and 10. A semester or quarter course on
logic for computer scientists could be based on selections from Parts 1 and
3. Part 5 could be used for a third semester on the theory of computation
or an introduction to programming language semantics. Many other ar-
rangements and courses are possible, as should be apparent from the
dependency graph, which follows the Acknowledgments. It is our hope,
however, that this book will help readers to see theoretical computer
science not as a fragmented list of discrete topics, but rather as a unified
subject drawing on powerful mathematical methods and on intuitions
derived from experience with computing technology to give valuable in-
sights into a vital new area of human knowledge.

Note to the Reader

Many readers will wish to begin with Chapter 2, using the material of
Chapter 1 for reference as required. Readers who enjoy skipping around
will find the dependency graph useful.

Sections marked with an asterisk (*) may be skipped without loss of
continuity. The relationship of these sections to later material is given in
the dependency graph.

Exercises marked with an asterisk either introduce new material, refer
to earlier material in ways not indicated in the dependency graph, or
simply are considered more difficult than unmarked exercises..

A reference to Theorem 8.1 is to Theorem 8.1 of the chapter in which
the reference is made. When a reference is to a theorem in another
chapter, the chapter is specified. The same system is used in referring to
numbered formulas and to exercises.
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1

Preliminaries

1. Sets and n-tuples

We shall often be dealing with sets of objects of some definite kind.

Thinking of a collection of entities as a set simply amounts to a decision to

regard the whole collection as a single object. We shall use the word class

as synonymous with set. In particular we write N for the set of natural

numbers 0,1,2,3,.... In this book the word number will always mean

natural number except in contexts where the contrary is explicitly stated.
We write

aes
to mean that a belongs to S or, equivalently, is a member of the set S, and
a& s

to mean that a does not belong to S. It is useful to speak of the empty set,
written J, which has no members. The equation R = S, where R and §
are sets, means that R and S are identical as sets, that is, that they have
exactly the same members. We write R C § and speak of R as a subset of
§ to mean that every element of R is also an element of S. Thus, R = S if
and only if Rc S and S € R. Note also that for any set R, & C R and
R € R. We write R C § to indicate that R € S but R # S. In this case R



