E R IR ki 1+ Sl = 5% 3l

A 2 RLIRT O RN

WS, AR
(BETHR - E24R)

Martin D. Davis
[ZE] Ron Sigal -
Elaine J. Weyuker

TURING

-
..... >, .
y L
Zz N\EHEH it
% POSTS & '”flj‘j('()\l PRESS

\

TP301/Y17

2009.

UL ERENETSENHERED

Computability, Complexity, and Languages
Fundamentals of Theoretical Computer Science
Second Edition

AR iy s Ak
b =

EHERSRE (CIP) 48
HEEicAR. TiFEE. Z23F1iE S = Computab-

ility, Complexity, and Languages: Fundamentals of
Theoretical Computer Science: 520K : #3¢/ (35) &4
(Davis, M. D.) , (%) PEf/R (Sigal, R.) , (%) HR
(Weyuker, E.j.) . —Jt3t. ARMHRHEHARH, 20095

(B R BERR SRR 251
ISBN 978-7-115-19657-6

Lit ILO#K- Q- 0% L HEHR-B
w—%3 V. TP301 ‘

h R A B A3 THCTPEE R 7 (2009) - 350068315

NERE

AR B IR SURE &0, SRRSO N SISt 2B AR, 0k
SHEHL. B, ERUERIECESANES, ok T IHEERR, BXIES. BEESHDRE.
TR Al (RAENPE AR GEE SiE LS, HaR T el Z AT -

AR BN R ATl S R ARVE MR AR B S % T, T HREIGURE LA+t
BRI R EEA,

R ERR I SLLR S 251
HEBISEM. TitENE. ERMMES (EXK - $2W)
¢ Z [2£] Martin D. Davis Ron Sigal Elaine J. Weyuker
AL iR
& AR R R AT e R K 7 1B 5145
b 100061 ek 315@ptpress.com.cn

Bl hip://www.ptpress.com.cn
JBHEIRS Af HE BRI E R
¢ I 800x 1000 1/16
Elisk. 39.25
TH: 154 TF 200947 5 HE IR
Cgg: 1-2000 200945 S 1AL 5C88 1 ik EDKY
FIRRATARILS ElF: 01-2008-5836'
ISBN 978-7-115-19657-6/TP
Efr: 79.005C

EEREMLE. (010) 88593802 E[FREML. (010) 67129223
FSIRMEE . (010) 67171154

hix #X 7= BA

Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science, Second
Edition by Martin D. Davis, Ron Sigal, and Elaine J.Weyuker, ISBN: 0-12-206382-1.

Copyright © 1994, 1983 by Elsevier. All rights reserved.

Authorized English language reprint edition published by the Proprietor.

ISBN: 978-981-272-313-0

Copyright © 2009 by Elsevier (Singapore) Pte Ltd. All rights reserved.

Elsevier (Singapore) Pte Ltd.
3 Killiney Road
08-01 Winsland House I
Singapore 239519
Tel: (65)6349-0200
Fax: (65)6733-1817

First Published 2009
20094E ¥0HK

Printed in China by POSTS & TELECOM PRESS under special arrangement with Elsevier (Singapore) Pte
Ltd. This edition is authorized for sale in China only, excluding Hong Kong SAR and Taiwan. Unauthorized
export of this edition is a violation of the Copyright Act. Violation of this Law is subject to Civil and Criminal
Penalties.

AA5HSCRENRR i Elsevier (Singapore) Pte Ltd. $4%A FEB LI AR ZE FR A ARIEFNEIEN (4%
FRFFITBX MEEIK) HRET. REUTZHO, VAR SN, Bk sk,

To the memory of Helen and Harry Davis
and to
Hannah and Herman Sigal
Sylvia and Marx Weynker

Virginia Davis, Dana Latch, Thomas Ostrand
and to
Rachel Weyuker Ostrand

Preface

Theoretical computer science is the mathematical study of models of
computation. As such, it originated in the 1930s, well before the existence
of modern computers, in the work of the logicians Church, Gédel, Kleene,
Post, and Turing. This early work has had a profound influence on the
practical and theoretical development of computer science. Not only has
the Turing machine model proved basic for theory, but the work of these
pioneers presaged many aspects of computational practice that are now
commonplace and whose intellectual antecedents are typically unknown to
users. Included among these are the existence in principle of all-purpose
(or universal) digital computers, the concept of a program as a list of
instructions in a formal language, the possibility of interpretive programs,
the duality between software and hardware, and the representation of
languages by formal structures, based on productions. While the spotlight
in computer science has tended to fall on the truly breathtaking technolog-
ical advances that have been taking place, important work in the founda-
tions of the subject has continued as well. It is our purpose in writing this
book to provide an introduction to the various aspects of theoretical
computer science for undergraduate and graduate students that is suffi-
ciently comprehensive that the professional literature of treatises and
research papers will become accessible to our readers.

We are dealing with a very young field that is still finding itself.
Computer scientists have by no means been unanimous in judging which

2 Preface

parts of the subject will turn out to have enduring significance. In this
situation, fraught with peril for authors, we have attempted to select topics
that have already achieved a polished classic form, and that we believe will
play an important role in future research.

In this second edition, we have included new material on the subject of
programming language semantics, which we believe to be established as an
important topic in theoretical computer science. Some of the material on
computability theory that had been scattered in the first edition has been
brought together, and a few topics that were deemed to be of only
peripheral interest to our intended audience have been eliminated. Nu-
merous exercises have also been added. We were particularly pleased to be
able to include the answer to a question that had to be listed as open in
the first edition. Namely, we present Neil Immerman’s surprisingly
straightforward proof of the fact that the class of languages accepted by
linear bounded automata is closed under complementation.

We have assumed that many of our readers will have had little experi-
ence with mathematical proof, but that almost all of them have had
substantial programming experience. Thus the first chapter contains an
introduction to the use of proofs in mathematics in addition to the usual
explanation of terminology and notation. We then proceed to take advan-
tage of the reader’s background by developing computability theory in the
context of an extremely simple abstract programming language. By system-
atic use of a macro expansion technique, the surprising power of the
language is demonstrated. This culminates in a universal program, which is
written in all detail on a single page. By a series of simulations, we then
obtain the equivalence of various different formulations of computability,
including Turing’s. Our point of view with respect to these simulations is
that it should not be the reader’s responsibility, at this stage, to fill in the
details of vaguely sketched arguments, but rather that it is our responsibil-
ity as authors to arrange matters so that the simulations can be exhibited
simply, clearly, and completely.

This material, in various preliminary forms, has been used with under-
graduate and graduate students at New York University, Brooklyn College,
The Scuola Matematica Interuniversitaria—Perugia, The University of Cal-
ifornia—Berkeley, The University of California—Santa Barbara, Worcester
Polytechnic Institute, and Yale University.

Although it has been our practice to cover the material from the second
part of the book on formal languages after the first part, the chapters on
regular and on context-free languages can be read immediately after
Chapter 1. The Chomsky-Schiitzenberger representation theorem for con-
text-free languages in used to develop their relation to pushdown au-
tomata in a way that we believe is clarifying. Part 3 is an exposition of the
aspects of logic that we think are important for computer science and can

Preface 3

also be read immediately following Chapter 1. Each of the chapters of Part
4 introduces an important theory of computational complexity, concluding
with the theory of NP-completeness. Part 5, which is new to the second
edition, uses recursion equations to expand upon the notion of computabil-
ity developed in Part 1, with an emphasis on the techniques of formal
semantics, both denotational and operational. Rooted in the early work of
Gddel, Herbrand, Kleene, and others, Part 5 introduces ideas from the
modern fields of functional programming languages, denotational seman-
tics, and term rewriting systems.

Because many of the chapters are independent of one another, this book
can be used in various ways. There is more than enough material for a
full-year course at the graduate level on theory of computation. We have
used the unstarred sections of Chapters 1-6 and Chapter 9 in a successful
one-semester junior-level course, Introduction to Theory of Computation,
at New York University. A course on finite automata and formal languages
could be based on Chapters 1, 9, and 10. A semester or quarter course on
logic for computer scientists could be based on selections from Parts 1 and
3. Part 5 could be used for a third semester on the theory of computation
or an introduction to programming language semantics. Many other ar-
rangements and courses are possible, as should be apparent from the
dependency graph, which follows the Acknowledgments. It is our hope,
however, that this book will help readers to see theoretical computer
science not as a fragmented list of discrete topics, but rather as a unified
subject drawing on powerful mathematical methods and on intuitions
derived from experience with computing technology to give valuable in-
sights into a vital new area of human knowledge.

Note to the Reader

Many readers will wish to begin with Chapter 2, using the material of
Chapter 1 for reference as required. Readers who enjoy skipping around
will find the dependency graph useful.

Sections marked with an asterisk (*) may be skipped without loss of
continuity. The relationship of these sections to later material is given in
the dependency graph.

Exercises marked with an asterisk either introduce new material, refer
to earlier material in ways not indicated in the dependency graph, or
simply are considered more difficult than unmarked exercises..

A reference to Theorem 8.1 is to Theorem 8.1 of the chapter in which
the reference is made. When a reference is to a theorem in another
chapter, the chapter is specified. The same system is used in referring to
numbered formulas and to exercises.

- Acknowledgments

It is a pleasure to acknowledge the help we have received. Charlene
Herring, Debbie Herring, Barry Jacobs, and Joseph Miller made their
student classroom notes available to us. James Cox, Keith Harrow, Steve
Henkind, Karen Lemone, Colm O’Dunlaing, and James Robinett provided
helpful comments and corrections. Stewart Weiss was kind enough to
redraw one of the figures. Thomas Ostrand, Norman Shulman, Louis
Salkind, Ron Sigal, Patricia Teller, and Elia Weixelbaum were particularly
generous with their time, and devoted many hours to helping us. We are
especially grateful to them.

Acknowledgments to Corrected Printing

We have taken this opportunity to correct a number of errors. We are
grateful to the readers who have called our attention to errors and who
have suggested corrections. The following have been particularly helpful:
Alissa Bernholc, Domenico Cantone, John R. Cowles, Herbert Enderton,
Phyllis Frankl, Fred Green, Warren Hirsch, J. D. Monk, Steve Rozen, and
Stewart Weiss.

2 Acknowledgments

Acknowledgments to Second Edition

Yuri Gurevich, Paliath Narendran, Robert Paige, Carl Smith, and particu-
larly Robert McNaughton made numerous suggestions for improving the
first edition. Kung Chen, William Hurwood, Dana Latch, Sidd Puri,
Benjamin Russell, Jason Smith, Jean Toal, and Niping Wu read a prelimi-

nary version of Part 5.

Acknowledgments to Reprint of Second Edition

We are grateful to the following people for their careful reading of the
Second Edition: John Case, P. Klingsberg, Ken Klein, Eugenio Omodeo,
David Schedler, John David Stone, and Lenore Zuck.

Dependency Graph

Chapter 1
Preliminaries
Chapter 9 Chapter 2 Chapter 12 -
Regular Languages Programs and Propositional Calculus
Computable Functions
Chapter 10 Chapter 3
Context-Free Languages Primitive Recursive

Functions

Chapter 16 & Chapter 4 * Chapter 8

Approximation A Universal Program Classifying Unsolvable
Orderings Problems
I \

Chaoter 17 Chapter 5

X aprer i Calculations on Strings Chapter 14

Denotational Semantics of Abstract Complexity
Recursion Equatior/
Chapter 6 : Chapter 15
Chapter 18 Turing Machines 1 Polynomial-Time |d
Operational Semantics of Computability
Recursion Equations l
Chapter 7
/ Processes and Grammars ~ [*s,
Chapter 11 Chapter 13
Context-Sensitive Quantification Theory

Languages

A solid line between two chapters indicates the dependence of the un-
starred sections of the higher numbered chapter on the unstarred sections
of the lower numbered chapter. An asterisk next to a solid line indicates
that knowledge of the starred sections of the lower numbered chapter is
also assumed. A dotted line shows that knowledge of the unstarred
sections of the lower numbered chapter is assumed for the starred sections
of the higher numbered chapter.

Contents

1 Preliminaries

NP LN~

Sets and n-tuples
Functions

Alphabets and Strings
Predicates

Quantifiers

Proof by Contradiction
Mathematical Induction

Part 1 Computability

2 Programs and Computable Functions

1.

e

A Programming Language
Some Examples of Programs
Syntax

Computable Functions
More about Macros

O OO N N P) e e

15

17
17
18
25
28
32

2

3 Primitive Recursive Functions

1.

NI

Composition

Recursion

PRC Classes

Some Primitive Recursive Functions
Primitive Recursive Predicates

Iterated Operations and Bounded Quantifiers
Minimalization

Pairing Functions and G6del Numbers

4 A Universal Program

*8.
*9.

Nk LN -

Coding Programs by Numbers

The Halting Problem

Universality

Recursively Enumerable Sets

The Parameter Theorem

Diagonalization and Reducibility

Rice’s Theorem

The Recursion Theorem

A Computable Function That Is Not Primitive Recursive

5 Calculations on Strings

1.

Sk wN

Numerical Representation of Strings
A Programming Language for String Computations
The Languages . and .%,

- Post—Turing Programs

Simulation of .%, in 9
Simulation of 9" in %

6 Turing Machines

A e

Internal States

A Universal Turing Machine

The Languages Accepted by Turing Machines
The Halting Problem for Turing Machines
Nondeterministic Turing Machines
Variations on the Turing Machine Theme

7 Processes and Grammars

1.
2.

Semi-Thue Processes
Simulation of Nondeterministic Turing Machines by
Semi-Thue Processes

Contents

39
39
40
42
44
49
52
55
59

65
65
68
70
78
85
88
95
97
105

113
113
121
126
129
135
140

145
145
152
153
157
159
162

169
169

17

Contents

3.
4.
5.
6.
*7.

Unsolvable Word Problems

Post’s Correspondence Problem

Grammars

Some Unsolvable Problems Concerning Grammars
Normal Processes

8 Classifying Unsolvable Problems

1.

RN AN

Using Oracles

Relativization of Universality
Reducibility

Sets r.e. Relative to an Oracle

The Arithmetic Hierarchy

Post’s Theorem

Classifying Some Unsolvable Problems
Rice’s Theorem Revisited

Recursive Permutations

Part 2 Grammars and Automata

9 Regular Languages

10

L.

Nows LN

Finite Automata
Nondeterministic Finite Automata
Additional Examples

Closure Properties

. Kleene’s Theorem

The Pumping Lemma and Its Applications
The Myhill-Nerode Theorem ;

Context-Free Languages

*

XN WN -

Context-Free Grammars and Their Derivation Trees

Regular Grammars

Chomsky Normal Form
Bar-Hillel’s Pumping Lemma
Closure Properties

Solvable and Unsolvable Problems
Bracket Languages

Pushdown Automata

Compilers and Formal Languages

176
181
186
191
192

197
197
201
207
211
215
217
224
230
231

235

237
237
242
247
249
253
260
263

269
269
280
285
287
291
297
301
308
323

4 Contents

11 Context-Sensitive Languages
1. The Chomsky Hierarchy
2. Linear Bounded Automata
3. Closure Properties

Part 3 Logic

12 Propositional Calculus
1. Formulas and Assignments
Tautological Inference
Normal Forms
The Davis—Putnam Rules
Minimal Unsatisfiability and Subsumption
Resolution
The Compactness Theorem

NSoWwAE LN

13 Quantification Theory

1. The Language of Predicate Logic
2. Semantics

3. Logical Consequence

4. Herbrand’s Theorem

5. Unification

6. Compactness and Countability
7. Godel’s Incompleteness Theorem

*8. Unsolvability of the Satisfiability Problem in Predicate Logic

*

Part 4 Complexity

14 Abstract Complexity
1. The Blum Axioms
2. The Gap Theorem
3. Preliminary Form of the Speedup Theorem
4. The Speedup Theorem Concluded

15 Polynomial-Time Computability
1. Rates of Growth
2. Pversus NP
3. Cook’s Theorem
4. Other NP-Complete Problems

327
327
330
337

345

347
347
352
353
360
366
367
370

375
375
377
382
388
399
404
407
410

417

419
419
425
428
435

439
439
443
451
457

Contents

Part 5 Semantics

16 Approximation Orderings

1.

nhwwe

Programming Language Semantics
Partial Orders

Complete Partial Orders
Continuous Functions

Fixed Points

17 Denotational Semantics of Recursion Equations

6.

bl o

Syntax

Semantics of Terms

Solutions to W-Programs

Denotational Semantics of W-Programs
Simple Data Structure Systems
Infinitary Data Structure Systems

18 Operational Semantics of Recursion Equations

1. Operational Semantics for Simple Data Structure Systems
2.
3. Operational Semantics for Infinitary Data Structure Systems

Computable Functions

Suggestions for Further Reading
Notation Index

Index

465

467
467
472
475
486
494

505
505
511
520
530
539
544

557
557
575
584

593
595
599

1

Preliminaries

1. Sets and n-tuples

We shall often be dealing with sets of objects of some definite kind.

Thinking of a collection of entities as a set simply amounts to a decision to

regard the whole collection as a single object. We shall use the word class

as synonymous with set. In particular we write N for the set of natural

numbers 0,1,2,3,.... In this book the word number will always mean

natural number except in contexts where the contrary is explicitly stated.
We write

aes
to mean that a belongs to S or, equivalently, is a member of the set S, and
a& s

to mean that a does not belong to S. It is useful to speak of the empty set,
written J, which has no members. The equation R = S, where R and §
are sets, means that R and S are identical as sets, that is, that they have
exactly the same members. We write R C § and speak of R as a subset of
§ to mean that every element of R is also an element of S. Thus, R = S if
and only if Rc S and S € R. Note also that for any set R, & C R and
R € R. We write R C § to indicate that R € S but R # S. In this case R

