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Preface

Machine Learning: Modeling Data Locally and Globally delivers the
main contemporary themes and tools in machine learning including proba-
bilistic generative models and Support Vector Machines. These themes are
discussed or reformulated from either a local view or a global view. Diffe-
rent from previous books that only investigate machine learning algorithms
locally or globally, this book presents a unified and new picture for machine
learning both locally and globally. Within the new picture, various seemly
different machine learning models and theories are bridged in an elegant and
systematic manner. For precise and thorough understanding, this book also
presents applications of the new hybrid theory.

This book not only provides researchers with the latest research results
lively and timely, but also presents an excellent overview on machine learning.
Importantly, the new line of learning both locally and globally goes through
the whole book and makes various learning models understandable to a large
proportion of audience including researchers in machine learning, practition-
ers in pattern recognition, and graduate students.

The Chinese Univ. of Hong Kong, Kaizhu Huang
Jan. 2008 Huaigin Yang
Irwin King

Michael R. Lyu
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1

Introduction

The objective of this book is to establish a framework which combines two
different paradigms in machine learning: global learning and local learning.
The combined model demonstrates that a hybrid learning of these two dif-
ferent schools of approaches can outperform each isolated approach both
theoretically and empirically. Global learning focuses on describing a phe-
nomenon or modeling data in a global way. For example, a distribution over
the variables is usually estimated for summarizing the data. Its output can
usually reconstruct the data. This school of approaches, including Bayesian
Networks [8, 13, 30], Gaussian Mixture Models {3, 21], and Hidden Markov
Models {2, 25], has a long and distinguished history, which has been exten-
sively applied in artificial intelligence {26], pattern recognition [9], and com-
puter vision [7]. On the other hand, local learning does not intend to sum-
marize a phenomenon, but builds learning systems by concentrating on some
local parts of data. It lacks the flexibility yet surprisingly demonstrates supe-
rior performance to global learning according to recent researches [4, 16, 15].
In this book, a bridge has been established between these two different
paradigms. Moreover, the resulting principled framework subsumes several
important models, which respectively locate themselves into the global learn-
ing paradigm and the local learning paradigm.

In this chapter, we address the motivations of the two different learning
frameworks. As a summary, we present the objectives of this book and outline
the main models or the contributions. Finally, we provide an overview of the
rest of this book.

1.1 Learning and Global Modeling

When studying real world phenomena, scientists are always wondering whether
some underlying laws or nice mathematical formulae exist for governing these
complex phenomena. Moreover, in practice, due to incomplete information,
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the phenomena are usually nondeterministic. This motivates to base proba-
bilistic or statistical models to perform a global investigation on sampled data
from the phenomena. A common way for achieving this goal is to fit a density
on the observations of data. With the learned density, people can then in-
corporate prior knowledge, conduct predictions, and perform inferences and
marginalizations. One main category in the framework of global learning is
the so-called generative learning. By assuming a specific mathematical model
on the observations of data, e.g. a Gaussian distribution, the phenomena can
therefore be described or re-generated. Fig. 1.1 illustrates such an example.
In this figure, two classes of data are plotted as *’s for the first class and
o’s for the other class. The data can thus be modeled as two different mix-
tures of Gaussian distributions as illustrated in Fig. 1.2. By knowing only the
parameters of these distributions, one can then summarize the phenomena.
Furthermore, one can clearly employ this information to distinguish one class
of data from the other class or simply know how to separate two classes. This
is also well-known as Bayes optimal decision problems [12, 6].

-4 1

a3
-10 -5 0 -]
x,

Fig. 1.1. Two classes of two-dimensional data

In the development of learning approaches within the community of ma-
chine learning, there has been a migration from the early rule-based meth-
ods [11, 32] wanting more involvement of domain experts, to widely-used
probabilistic global models mainly driven by data itself [5, 9, 14, 17, 22, 33].
However, one question for most probabilistic global models is what kind of
global models, or more specifically, which type of densities should be speci-
fied beforehand for summarizing the phenomena. For some tasks, this can be
prescribed by a slight introduction of domain knowledge from experts. Unfor-
tunately, due to both the increasing sophistication of the real world learning
tasks and active interactions among different subjects of research, it is more
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Probability

Fig. 1.2. An illustration of distribution-based classifications (also known as
the Bayes optimal decision theory). Two Gaussian mixtures are engaged to
model the distribution of two classes of data respectively. The distribution
can then be used to construct the decision plane

and more difficult to obtain fast and valuable suggestions from experts. A fur-
ther question is thus proposed, i.e. what is the next step in the community
of machine learning, after experiencing a migration from rule-based models
to probabilistic global models? Recent progress in machine learning seems to
imply local learning as a solution.

1.2 Learning and Local Modeling

Global modeling addresses describing phenomena, no matter whether the
summarized information from the observations is applicable to specific tasks
or not. Moreover, the hidden principle under global learning is that infor-
mation can be accurately extracted from data. On the other hand, local
learning [10, 27, 28] which recently attracts active attention in the machine
learning community, usually regards that a general and accurate global learn-
ing is an impossible mission. Therefore, local learning focuses on capturing
only local yet useful information from data. Furthermore, recent research
progress and empirical study demonstrate that this much different learning
paradigm is superior to global learning in many facets.

In further details, instead of globally modeling data, local learning is more
task-oriented. It does not aim to estimate a density from data as in global
learning, which is usually an intermediate step for many tasks such as pattern
recognitions (note that the distribution or density obtained by global lear-
ning actually is not directly related to the classification itself); it also does not
intend to build an accurate model to fit the observations of data globally. Dif-
ferently, it only extracts useful information from data and directly optimizes
the learning goal. For example, when used in learning classifiers from data,
only those observations of data around the separating plane need to be ac-
curate, while inaccurate modeling over other data is certainly acceptable for



4 1 Introduction

the classification purpose. Fig. 1.3 illustrates such a problem. In this figure,
the decision boundary is constructed only based on those filled points, while
other points make no contributions to the classification plane (the decision
boundary is given based on the Gabriel Graph method [1, 18, 34]).

The decision plane

Fig. 1.3. An illustration of local learning (also known as the Gabriel
Graph classification). The decision boundary is just determined by
some local points indicated as filled points

However, although containing promising performance, local learning ap-
pears to locate itself at another extreme end to global learning. Employing
only local information may lose the global view of data. Consequently, some-
times, it cannot grasp the data trend, which is critical for guaranteeing better
performance for future data. This can be seen in the example as illustrated
in Fig. 1.4. In this figure, the decision boundary (also constructed by the
Gabriel Graph classification) is still determined by some local points indi-
cated as filled points. Clearly, this boundary does not grasp the data trend.

The decision plane ° o "

Fig. 1.4. An illustration on that local learning cannot grasp data trend.
The decision boundary (constructed by the Gabriel Graph classification)
is determined by some local points indicated as filled points. It, however,
loses the data trend. The decision plane should be obviously closer to the
filled squares rather than locating itself in the middle of filled (I’s and o’s



1.4 Major Contributions 5

More specifically, the class associated with o’s is obviously more scattered
than the class

associated with [(O’s on the axis indicated as dashed line. Therefore, a
more promising decision boundary should lie closer to filled (I’s than those
filled o’s instead of lying midway between filled points. A similar example
can also be seen in Chapter 2 on a more principled local learning model, i.e.
the current state-of-the-art classifier, Support Vector Machines (SVM) [31].
Targeting this problem, we then suggest a hybrid learning in this book.

1.3 Hybrid Learning

There are complementary advantages for both local learning and global lear-
ning. Global learning summarizes data and provides practitioners with know-
ledge on the structure, independence, and trend of data, since with the precise
modeling of phenomena, the observations can be accurately regenerated and
therefore can be studied or analyzed thoroughly. However, this also presents
difficulties in how to choose a valid model to describe all the information
(also called the problem of model selection). In comparison, local learning
directly employs part of information, critical for the specific oriented tasks,
and does not assume models to re-synthesize/restore the whole road-map of
data. Although demonstrated to be superior to global learning in many facets
of machine learning, it may lose some important global information. The
question here is thus, can reliable global information, independent of specific
model assumptions, be combined into local learning? This question clearly
motivates a hybrid learning of two largely different schools of approaches,
which is also the focus of this book.

1.4 Major Contributions

In this book, we aim to describe a hybrid learning scheme to combine two
different paradigms, namely global learning and local learning. Within this
scheme, we propose a hybrid model, named the Maxi-Min Margin Machine
(M*), demonstrated to contain both the merits of global learning in repre-
senting data and the advantages of local learning in handling tasks directly
and effectively. Moreover, adopting the viewpoint of local learning, we also
introduce a global learning model, called the Minimum Error Minimax Prob-
ability Machine (MEMPM), which does not assume specific distributions on
data and thus distinguishes itself from traditional global learning approaches.
The main models discussed in this book are briefly described as follows.

o The Maxi-Min Margin Machine model, a hybrid learning framework suc-
cessfully combining global learning and local learning
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o A unified framework of many important models
As will be demonstrated, our proposed hybrid model successfully uni-
fies both important models in local learning, e.g. the Support Vector
Machines [4], and significant models in global learning, such as the
Minimax Probability Machine (MPM) [19] and the Fisher Discrimi-
nant Analysis (FDA) [9)].

o With the generalization Guarantee
Various statements from many views such as the sparsity and Mar-
shall and Olkin Theory [20, 23] will be presented for providing the
generalization bound for the combined approach.

o A sequential Conic Programming solving method
Besides the theoretic advantages of the proposed hybrid learning, we
also tailor a sequential Conic Programming method [24, 29] to solve
the corresponding optimization problem. The computational cost is
shown to be polynomial and thus the proposed M* model can be
solved practically.

o The Minimum Error Minimaz Probebility Machine, a general global
learning model

o A worst-case distribution-free Bayes optimal classifier
Different from traditional Bayes optimal classifiers, MEMPM does
not assume distributions for the data. Starting with the Marshall
and Olkin theory, this model attempts to model data under the mini-
max schemes. It does not intend to extract exact information but the
worst-case information from data and thus presents an important
progress in global learning.

¢ Derive an explicit error bound for future data
Inheriting the advantages of global learning, the proposed general
global learning method contains an explicit worst-case error bound
for future data under a mild condition. Moreover, the experimental
results suggest that this bound is reliable and accurate.

¢ Propose a sequential Fractional Programming optimization
We have proposed a Fractional Programming optimization method
for the MEMPM model. In each iteration, the optimization is shown
to be a pseudo-concave problem, which thus guarantees that each
local solution will be the global solution in this step.

o The Biased Minimazr Probability Machine (BMPM), a global learning
method for biased or imbalanced learning

¢ Present a rigorous and systematic treatment for biased learning tasks
Although being a special case of our proposed general global learning
model, MEMPM, this model provides a quantitative and rigorous
approach for biased learning tasks, where one class of data is always
more important than the other class. Importantly, with explicitly
controlling the accuracy of one class, this branch model can precisely
impose biases on the important class.
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o Containing explicit generalization bounds for both classes of data
Inheriting the good feature of the MEMPM model, this model also
contains explicit generalization bounds for both classes of data. This
therefore guarantees a good prediction accuracy for future data.

e The Local Support Vector Regression (LSVR), a novel regression model

o Provide a systematic and automatic treatment in adapting margins
Motivated from M*, LSVR focuses on considering the margin setting
locally. When compared to the regression model of SVM, i.e. the Sup-
port Vector Regression (SVR), this novel regression model is shown
to be more robust with respect to the noise of data in that it contains
the volatile margin setting.

o Incorporate special cases very much similar to the standard SVR
When considering a consistent trend for all data points, the LSVR
can derive special cases very much similar to the standard SVR. We
further demonstrate that in a meaningful assumption, the standard
SVR is actually the special case of our LSVR model.

o Support Vector Regression with Local Margin Variations
Motivated from the local view of data, another variation of SVR is pro-
posed. It aims to adapt the margin in a more explicit way. This model is
similar to LSVR in the sense that they both adapt margin locally.

We describe the relationship among our developed models in Fig. 1.5.

A:Local Learning

B:Global Learning

C:Minimum Error Minmax Probability Machine
D:Biased Minimax Probability Machine

E:Maxi-Min Margin Machipe
F:Local Support Vector Regression
G:Support Vector Regression with Margin Variations

Fig. 1.5. The relationship among the developed models in this book
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1.5 Scope

This book states and refers to the learning first as statistical learning, which
appears to be the current main trend of learning approaches. We then further
restrict the learning in the framework of classification, one of the main prob-
lems in machine learning. The corresponding discussions on different models
including the conducted analysis of the computational and statistical aspects
of machine learning are all subject to the classification tasks. Nevertheless,
we will also extend the content of this book to regression problems, although
it is not the focus of this book.

1.6 Book Organization

The rest of this book is organized as follows:

e Chapter 2
We will review different learning paradigms in this chapter. We will es-
tablish a hierarchy graph attempting to categorize various models in the
framework of local learning and global learning. We will then base this
graph to describe and discuss these models. Finally, we motivate the
Minimum Error Minimax Probability Machine and the Maxi-Min Mar-
gin Machine.

e Chapter 3
We will develop a novel global learning model, called the Mininum Error
Minimax Probability Machine. We will demonstrate how this new model
represents the worst-case Bayes optimal classifier. We will detail its model
definition, provide interpretations, establish a robust version, extend to
nonlinear classifications, and present a series of experiments to demon-
strate the advantages of this model.

e Chapter 4
We will present the Maxi-Min Margin Machine, which successfully com-
bines two different but complementary learning paradigms, i.e. local
learning and global learning. We will show how this model incorporates
the Support Vector Machine, the Minimax Probability Machine, and the
Fisher Discriminant Analysis as special cases. We will also demonstrate
the advantages of Maxi-Min Margin Machine by providing theoretical,
geometrical, and empirical investigations.

e Chapter 5
An extension of the proposed MEMPM model will be discussed in this
chapter. More specifically, the Biased Minimum Minimax Probability Ma-
chine will be discussed and applied into the imbalanced learning tasks.
We will review different criteria for evaluating imbalanced learning ap-
proaches. We will then base these criteria to tailor BMPM into this type
of learning. Both illustrations on toy datasets and evaluations on real
world imbalanced and medical datasets will be provided in this chapter.
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e Chapter 6
A novel regression model called the Local Support Vector Regression,
which can be regarded as an extension from the Maxi-Min Margin Ma-
chine, will be introduced in detail in this chapter. We will show that our
model can vary the tube (margin) systematically and automatically ac-
cording to the local data trend. We will show that this novel regression
model is more robust with respect to the noise of data. Empirical eval-
uations on both synthetic data and real financial time series data will
be presented to demonstrate the merits of our model with respect to the
standard Support Vector Regression.

e Chapter 7
In this Chapter, we show how to adapt the margin settings locally for
the Support Vector Regression differently from the LSVR. We demon-
strate how the local view of data can be widely used in various models
or even differently applied in the same model. Empirical evaluations are
also presented in comparison with other competitive models on financial
data.

e Chapter 8
We will then summarize this book and conduct discussions on future
work.

We try to make each of these chapters self-contained. Therefore, in several
chapters, some critical contents, e.g. model definitions or illustrative figures,
having appeared in previous chapters, may be briefly reiterated.
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