R R U - T S S = |
- RESTful Web Services (%ENkR) '

Services

) ®
O’REILLY Leonard Richardson & Sam Ruby &
33 *§7 k "g' tHHﬁ’I‘i David Heinemeier Hansson }#

RESTful Web Services(&Enkx)
RESTful Web Services

L LR o
Leonard icbarﬁn %‘mﬁ?uby .

O'REILLY"

Beijing « Cambridge « Farnham e+ Koln » Paris Sebastopol « Taipei * Tokyo

O'Reilly Media, Inc. # A& & X % & JiAt iR

REA K HARAE

EBER%&E (CIP) iE

REST Z2# I P 2% Ak 5 = RESTful Web Services ; &
3/ (%) ##EFR (Richardson,L.), (3%) €Lk (Ruby,S.)
. —HA . —ER: REAFEHREE, 2007.11

473 : RESTful Web Services

ISBN 978-7-5641-0960-8

I .R-- 1.0 Q& II.HEEML — MZKIRS
7 — RFiXE — 33 IV.TP368.5

R A B 51 CIP $di %+ (2007) 48 154488 5

TLIE AR ZEVERCA FIEID
El%: 10-2007-194 &

©2007 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2007. Authorized reprint of the original English edition, 2007 O'Reilly Media, Inc., the owner of all rights to

publish and sell the same.
All rights reserved including the rights of reproduction in whole or in part in any form.
% LR &l O'Reilly Media, Inc. % #& 2007,

F LY PR & K F AR IR 2007 , 6% B IR G R Fe 4K S A 2] o IRAURR 4K B AL P & —— O'Reilly
Media, Inc. #5# 7T ,

WAHT R, AR/ HEFT, KB OEATIH oF 2R TAFUETH X T4,

45 44/ RESTful Web Services

TSR/ ki

FH %1t/ Karen Montgomery, B{g

iR kT HmEARFHAE (press.seu.edu.cn)

#o hb/ FEIRPOREEE 25 (PBLgRED 210096)

BN R/ i BRI PR 2 =

A/ T8TEHRx 980k 16FFA& 28EIK 470FF
MRt/ 20074811 A& 1R 2007 48 11 A% 1 kENRI
Efl %/ 0001-4000 fiit

15 2/ ISBN 978-7-5641-0960-8/TP - 156

s fir/ 46.00 ¢ ()

RESTful Web Services (&)
RESTful Web Servi ces

o s Eage

About the Authors

Leonard Richardson (http://www.crummy.com/) is the author of the Ruby Cook-
book (O’Reilly) and of several open source libraries, including Beautiful Soup. A
California native, he currently lives in New York.

Sam Ruby is a prominent software developer who has made significant contributions
to many Apache Software Foundation open source projects, and to the standardization
of web feeds via his involvement with the Atom web feed standard and the popular
Feed Validator web service. He currently holds a Senior Technical Staff Member posi-
tion in the Emerging Technologies Group of IBM. He resides in Raleigh, North
Carolina.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects. -

The animal on the cover of RESTful Web Services is a vulpine phalanger (P. vulpina).
Phalanger is the general term given to animals of the Phalangeridae family, which in-
cludes possums and cuscuses. (One should not confuse the Australian possum with
the American opossum; they are both marsupials, but very different.) The term pha-
langer is derived from the Greek word phalanges, which means finger or toe bone. The
omnivorous phalanger uses its claw-fingered paws (with opposable thumbs) to climb,
hunt, and live in trees. Phalangers are found in the forests of Australia, New Zealand,
Tasmania, and some Indonesian islands. Like the most famous marsupial, the kanga-
roo, female phalangers carry their young around in a front pouch after birth.

Phalanger is also the name of a PHP complier project for the .NET framework.

The cover image is from Wood’s Natural History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSans Mono Condensed.

R IENY X O'REILLY” 85 B $

M — AHPERIL+?

63 0' Re YL
]2 2 @ ABEKIO Railly BOD RS
o GBARRED GOAMEHE BHAS

%E%ﬁ%%ﬁ%@ﬁﬁﬁﬁeﬂﬁmﬁ
%%ﬁi&iﬁéao'ﬁeiugw@@%o 'lr

e ezl TR FHBEFPERES: E
Bt BB4R
E-mail (12A1#) BiF FMN

email: seupress@seu.edu.cn

O’REILLY®
http:/lwww.oreilly.com

O'Reilly Media, Inc.4 48

O'Reilly Media, Inc. 25 F7F UNIX, X, Internet fiH Mk R L BB EAH
GG HAL I R A B, R 2 BEAL AR Y S

I #5459 (The Whole Internet User's Guide & Catalog) (#41%) 2 3t E-FBIELEA
T R EER SO A 2 —) FIGNN (HFA) Internet [] ARG AL W 3) , P2
WebSite (55—~ 510 PCHIWeb IR %5 2) , O'Reilly Media, Inc.— H 4b T Internet
K e B B BT Y

Y2 BER R, O'Reilly Media, Inc. 2 i HIHHANLEBHRE —&—
ABEB—RFER. SRELHHEHEBHRHEAHLL, O'Reilly Media, Inc. RFHE
I RN Lk 5, X7 O'Reilly Media, Inc. JE AL T — A4k ¥ A A T Atb tH iR
It AR 7 %t . O'Reilly Media, Inc. A 0 4uiE N ALARTER &R F A, SE&MAR
AR LK, O'Reilly Media, Inc.ibH W £ B & HIVEE REE —— MAT14 5 & AH 564
BB AER., BWER, MAIESRSENE, O'Reilly Media, Inc. (RFEMh] 5 b b
#E B 45, H2H O'Reilly Media, Inc. E&H 5THHENLFEKRE, FLL O'Reilly
Media, Inc. 5B 1 P EEFREH LEH,

tH higi5 BA

Wl THREHLEC R B BN B, AR IEES A —AHARE R B8, 8
HLECR R 28 NI Tk A7 . @ik i& shAn B % A G0k T BRI . SATH
PERHLSURA T A S350 B 2 Pt A% B FE 40, o T 53 [e R A R ZE 2 — vt il
TRRE SN BRI A, FRAE K4 AR A% B O'Reilly Meida, Inc.ik ik, bt
SIS A R R R AT H AR S E AR L TTIREA & 2R, U E R s itk
FIOREITE R EMRAIRE . b, EORBHE K SESES ‘S HR, FEE B
HHeR” RELAIRE,

BAVH St AT, BS54 RE B AR AT L B E R A R BHEFHLARIBFZEA R
PR U A 2 S A T AR BT RB B , 3 B o WL R O % JR A5 BT (3 . th .0 22
PR E PR AL,

B AR R ED R L 5, A4

* (BEAH PMPY (FZENAR)

e (RESTful Web Services) (FE[R)

* (%3] WCF) (FZENRR)

* (%] Ruby) (FZENAR)

® (Beautiful Code) (FZE[IAR)

* (ActionScript 3.0 }588) (BZENER)

* (Linux RGEH) (ENRR)

* (N5l Perl) (FUENAR)

* (BAZMERMRIHS5IZHY FEENR)
° (Linux Kernel H ATFMY (BZENMR)

® {ActionScript 3.0 Cookbook) (F2E[Ifik)
° {CSS:The Missing Manual) (£ZE[IkR)

For Woot, Moby, and Beet.

—ILeonard

For Christopher, Catherine, and Carolyn.

—Sam

Foreword

The world of web services has been on a fast track to supernova ever since the architect
astronauts spotted another meme to rocket out of pragmatism and into the universe of
enterprises. But, thankfully, all is not lost. A renaissance of HTTP appreciation is
building and, under the banner of REST, shows a credible alternative to what the mer-
chants of complexity are trying to ram down everyone’s throats; a simple set of
principles that every day developers can use to connect applications in a style native to
the Web.

RESTful Web Services shows you how to use those principles without the drama, the
big words, and the miles of indirection that have scared a generation of web developers
into thinking that web services are so hard that you have to rely on BigCo implemen-
tations to get anything done. Every developer working with the Web needs to read this
book.

—David Heinemeier Hansson

Xiii

Preface

A complex system that works is invariably found to have
evolved from a simple system that worked.

—TJohn Gall
Systemantics

We wrote this book to tell you about an amazing new technology. It’s here, it’s hot,
and it promises to radically change the way we write distributed systems. We’re talking
about the World Wide Web.

Okay, it’s not a new technology. It’s not as hot as it used to be, and from a technical
standpoint it’s not incredibly amazing. But everything else is true. In 10 years the Web
has changed the way we live, but it’s got more change left to give. The Web is a simple,
ubiquitous, yet overlooked platform for distributed programming. The goal of this
book is to pull out that change and send it off into the world.

It may seem strange to claim that the Web’s potential for distributed programming has
been overlooked. After all, this book competes for shelf space with any number of other
books about web services. The problem is, most of today’s “web services” have nothing
to do with the Web. In opposition to the Web’s simplicity, they espouse a heavyweight
architecture for distributed object access, similar to COM or CORBA. Today’s “web
service” architectures reinvent or ignore every feature that makes the Web successful.

It doesn’t have to be that way. We know the technologies behind the Web can drive
useful remote services, because those services exist and we use them every day. We
know such services can scale to enormous size, because they already do. Consider the
Google search engine. What is it but a remote service for querying a massive database
and getting back a formatted response? We don’t normally think of web sites as “serv-
ices,” because that’s programming talk and a web site’s ultimate client is a human, but
services are what they are.

Every web application—every web site—is a service. You can harness this power for
programmable applications if you work with the Web instead of against it, if you don’t
bury its unique power under layers of abstraction. It’s time to put the “web” back into
“web services.”

The features that make a web site easy for a web surfer to use also make a web service
API easy for a programmer to use. To find the principles underlying the design of these
services, we can just translate the principles for human-readable web sites into terms
that make sense when the surfers are computer programs.

That’s what we do in this book. Our goal throughout is to show the power (and, where
appropriate, the limitations) of the basic web technologies: the HTTP application pro-
tocol, the URI naming standard, and the XML markup language. Our topic is the set
of principles underlying the Web: Representational State Transfer, or REST. For the
first time, we set down best practices for “RESTful” web services. We cut through the
confusion and guesswork, replacing folklore and implicit knowledge with concrete
advice.

We introduce the Resource-Oriented Architecture (ROA), a commonsense set of rules
for designing RESTful web services. We also show you the view from the client side:
how you can write programs to consume RESTful services. Our examples include real-
world RESTful services like Amazon’s Simple Storage Service (S3), the various incar-
nations of the Atom Publishing Protocol, and Google Maps. We also take popular
services that fall short of RESTfulness, like the del.icio.us social bookmarking API, and
rehabilitate them.

The Web Is Simple

Why are we so obsessed with the Web that we think it can do everything? Perhaps we
are delusional, the victims of hype. The web is certainly the most-hyped part of the
Internet, despite the fact that HTTP is not the most popular Internet protocol. De-
pending on who’s measuring, the bulk of the world’s Internet traffic comes from email
(thanks to spam) or BitTorrent (thanks to copyright infringement). If the Internet were
to disappear tomorrow, email is the application people would miss the most. So why
the Web? What makes HTTP, a protocol designed to schlep project notes around a
physics lab, also suited for distributed Internet applications?

Actually, to say that HTTP was designed for anything is to pay it a pretty big compli-
ment. HTTP and HTML have been called “the Whoopee Cushion and Joy Buzzer of
Internet protocols, only comprehensible as elaborate practical jokes”—and that’s by
someone who likes them.” The first version of HTTP sure looked like a joke. Here’s a
sample interaction between client and server:

Client request Server response
GET /hello.txt Hello, world!

" Clay Shirky, “In Praise of Evolvable Systems” (http://www.shirky.com/writings/evolve.html)

xvi | Preface

That’s it. You connected to the server, gave it the path to a document, and then the
server sent you the contents of that document. You could do little else with HTTP 0.9.
It looked like a featureless rip-off of more sophisticated file transfer protocols like FTP.

This is, surprisingly, a big part of the answer. With tongue only slightly in cheek we
can say that HTTP is uniquely well suited to distributed Internet applications because
it has no features to speak of. You tell it what you want, and it gives it to you. In a twist
straight out of a kung-fu movie,T HTTP’s weakness is its strength, its simplicity its
power.

In that first version of HTTP, cleverly disguised as a lack of features, we can see ad-
dressability and statelessness: the two basic design decisions that made HTTP an
improvement on its rivals, and that keep it scalable up to today’s mega-sites. Many of
the features lacking in HTTP 0.9 have since turned out to be unnecessary or counter-
productive. Adding them back actually cripples the Web. Most of the rest were
implemented in the 1.0 and 1.1 revisions of the protocol. The other two technologies
essential to the success of the Web, URIs and HTML (and, later, XML), are also simple
in important senses.

Obviously, these “simple” technologies are powerful enough to give us the Web and
the applications we use on it. In this book we go further, and claim that the World
Wide Web is a simple and flexible environment for distributed programming. We also
claim to know the reason for this: that there is no essential difference between the
human web designed for our own use, and the “programmable web” designed for con-
sumption by software programs. We say: if the Web is good enough for humans, it’s
good enough for robots. We just need to make some allowances. Computer programs
are good at building and parsing complex data structures, but they’re not as flexible as
humans when it comes to interpreting documents.

Big Web Services Are Not Simple

There are a number of protocols and standards, mostly built on top of HTTP, designed
for building Web Services (note the capitalization). These standards are collectively
called the WS-* stack. They include WS-Notification, WS-Security, WSDL, and SOAP.
Throughout this book we give the name “Big Web Services” to this collection of tech-
nologies as a fairly gentle term of disparagement.

This book does not cover these standards in any great detail. We believe you can im-
plement web services without implementing Big Web Services: that the Web should
be all the service you need. We believe the Web’s basic technologies are good enough
to be considered the default platform for distributed services.

Some of the WS-* standards (such as SOAP) can be used in ways compatible with REST
and our Resource-Oriented Architecture. In practice, though, they’re used to

T Legend of The Drunken Protocol (1991)

Preface | xvii

implement Remote Procedure Call applications over HTTP. Sometimes an RPC style
is appropriate, and sometimes other needs take precedence over the virtues of the Web.
This is fine.

What we don’t like is needless complexity. Too often a programmer or a company
brings in Big Web Services for a job that plain old HTTP could handle just fine. The
effect is that HTTP is reduced to a transport protocol for an enormous XML payload
that explains what’s “really” going on. The resulting service is far too complex, im-
possible to debug, and won’t work unless your clients have the exact same setup as you

do.

Big Web Services do have one advantage: modern tools can create a web service from
your code with a single click, especially if you're developing in Java or C#. If you’re
using these tools to generate RPC-style web services with the WS-* stack, it probably
doesn’t matter to you that a RESTful web service would be much simpler. The tools
hide all the complexity, so who cares? Bandwidth and CPU are cheap.

This attitude works when you’re working in a homogeneous group, providing services
behind a firewall for other groups like yours. If your group has enough political clout,
you may be able to get people to play your way outside the firewall. But if you want
your service to grow to Internet scale, you’ll have to handle clients you never planned
for, using custom-built software stacks to do things to your service you never imagined
were possible. Your users will want to integrate your service with other services you’ve
never heard of. Sound difficult? This already happens on the Web every day.

Abstractions are never perfect. Every new layer creates failure points, interoperability
hassles, and scalability problems. New tools can hide complexity, but they can’t justify
it—and they always add it. Getting a service to work with the Web as a whole means
paying attention to adaptability, scalability, and maintainability. Simplicity—that de-
spised virtue of HTTP 0.9—is a prerequisite for all three. The more complex the system,
the more difficult it is to fix when something goes wrong.

If you provide RESTful web services, you can spend your complexity on additional
features, or on making multiple services interact. Success in providing services also
means being part of the Web instead of just “on” the Web: making your information
available under the same rules that govern well-designed web sites. The closer you are
to the basic web protocols, the easier this is.

The Story of the REST

REST is simple, but it’s well defined and not an excuse for implementing web services
as half-assed web sites because “they’re the same.” Unfortunately, until now the main
REST reference was chapter five of Roy Fielding’s 2000 Ph.D. dissertation, which is a
good read for a Ph.D. dissertation, but leaves most of the real-world questions unan-
swered. ¥ That’s because it presents REST not as an architecture but as a way of judging
architectures. The term “RESTful” is like the term “object-oriented.” A language, a

xviii | Preface

framework, or an application may be designed in an object-oriented way, but that
doesn’t make its architecture the object-oriented architecture.

Even in object-oriented languages like C++ and Ruby, it’s possible to write programs
that are not truly object-oriented. HTTP in the abstract does very well on the criteria
of REST. (It ought to, since Fielding co-wrote the HTTP standard and wrote his dis-
sertation to describe the architecture of the Web.) But real web sites, web applications,
and web services often betray the principles of REST. How can you be sure you're
correctly applying the principles to the problem of designing a specific web service?

Most other sources of information on REST are informal: mailing lists, wikis, and
weblogs (I list some of the best in Appendix A). Up to now, REST’s best practices have
been a matter of folklore. What’s needed is a concrete architecture based on the REST
meta-architecture: a set of simple guidelines for implementing typical services that ful-
fill the potential of the Web. We present one such architecture in this book as the
Resource-Oriented Architecture (see Chapter 4). It’s certainly not the only possible
high-level RESTful architecture, but we think it’s a good one for designing web services
that are easy for clients to use.

We wrote the ROA to bring the best practices of web service design out of the realm
of folklore. What we’ve written is a suggested baseline. If you’ve tried to figure out
REST in the past, we hope our architecture gives you confidence that what you're doing
is “really” REST. We also hope the ROA will help the community as a whole make
faster progress in coming up with and codifying best practices. We want to make it easy
for programmers to create distributed web applications that are elegant, that do the job
they’re designed for, and that participate in the Web instead of merely living on top of
1t. I

We know, however, that it’s not enough to have all these technical facts at your dis-
posal. We’ve both worked in organizations where major architectural decisions didn’t
go our way. You can’t succeed with a RESTful architecture if you never get a chance
to use it. In addition to the technical know-how, we must give you the vocabulary to
argue for RESTful solutions. We've positioned the ROA as a simple alternative to the
RPC-style architecture used by today’s SOAP+WSDL services. The RPC architecture
exposes internal algorithms through a complex programming-language-like interface
that’s different for every service. The ROA exposes internal data through a simple
document-processing interface that’s always the same. In Chapter 10, we compare the
two architectures and show how to argue for the ROA.

Fielding, Roy Thomas. Architectural Styles and the Design of Network-Based Software Architectures, Doctoral
dissertation, University of California, Irvine, 2000 (http://www.ics.uci.edu/~fielding/pubs/dissertation/
top.htm)

Preface | xix

Reuniting the Webs

Programmers have been using web sites as web services for years—unofficially, of
course.8 It’s difficult for a computer to understand web pages designed for human
consumption, but that’s never stopped hackers from fetching pages with automated
clients and screen-scraping the interesting bits. Over time, this drive was sublimated
into programmer-friendly technologies for exposing a web site’s functionality in offi-
cially sanctioned ways—RSS, XML-RPC, and SOAP. These technologies formed a
programmable web, one that extended the human web for the convenience of software
programs.

Our ultimate goal in this book is to reunite the programmable web with the human
web. We envision a single interconnected network: a World Wide Web that runs on
one set of servers, uses one set of protocols, and obeys one set of design principles. A
network that you can use whether you’re serving data to human beings or computer
programs.

The Internet and the Web did not have to exist. They come to us courtesy of misallo-
cated defense money, skunkworks engineering projects, worse-is-better engineering
practices, big science, naive liberal idealism, cranky libertarian politics, techno-
fetishism, and the sweat and capital of programmers and investors who thought they’d
found an easy way to strike it rich.

The result is, amazingly, a simple, open (for now), almost universal platform for net-
worked applications. This platform contains much of human knowledge and supports
most fields of human endeavor. We think it’s time to seriously start applying its rules
to distributed programming, to open up that information and those processes to au-
tomatic clients. If you agree, this book will show you how to do it.

What's in This Book?

In this book we focus on practical issues: how to design and implement RESTful web
services, and clients for those services. Our secondary focus is on theory: what it means
to be RESTful, and why web services should be more RESTful instead of less. We don’t
cover everything, but we try to hit today’s big topics, and because this is the first book
of its kind, we return to the core issue—how to design a RESTful service—over and
over again.

The first three chapters introduce web services from the client’s perspective and show
what’s special about RESTful services.

§ For an early example, see Jon Udell’s 1996 Byte article “On-Line Componentware” (http://www.byte.com/
art/9611/sec/art1.htm). Note: “A powerful capability for ad hoc distributed computing arises naturally from
the architecture of the Web.” That’s from 1996, folks.

xx | Preface

Chapter 1, The Programmable Web and Its Inhabitants
In this chapter we introduce web services in general: programs that go over the
Web and ask a foreign server to provide data or run an algorithm. We demonstrate
the three common web service architectures: RESTful, RPC-style, and REST-RPC
hybrid. We show sample HTTP requests and responses for each architecture, along
with typical client code.

Chapter 2, Writing Web Service Clients
In this chapter we show you how to write clients for existing web services, using
an HTTP library and an XML parser. We introduce a popular REST-RPC service
(the web service for the social bookmarking site del.icio.us) and demonstrate cli-
ents written in Ruby, Python, Java, C#, and PHP. We also give technology
recommendations for several other languages, without actually showing code.
JavaScript and Ajax are covered separately in Chapter 11.

Chapter 3, What Makes RESTful Services Different?
We take the lessons of Chapter 2 and apply them to a purely RESTful service:
Amazon’s Simple Storage Service (S3). While building an S3 client we illustrate
some important principles of REST: resources, representations, and the uniform
interface.

The next six chapters form the core of the book. They focus on designing and imple-
menting your own RESTful services.

Chapter 4, The Resource-Oriented Architecture
A formal introduction to REST, not in its abstract form but in the context of a
specific architecture for web services. Our architecture is based on four important
REST concepts: resources, their names, their representations, and the links be-
tween them. Its services should be judged by four RESTful properties: addressa-
bility, statelessness, connectedness, and the uniform interface.

Chapter 5, Designing Read-Only Resource-Oriented Services
We present a procedure for turning an idea or a set of requirements into a set of
RESTful resources. These resources are read-only: clients can get data from your
service but they can’t send any data of their own. We illustrate the procedure by
designing a web service for serving navigable maps, inspired by the Google Maps
web application.

Chapter 6, Designing Read/Write Resource-Oriented Services
We extend the procedure from the previous chapter so that clients can create,
modify, and delete resources. We demonstrate by adding two new kinds of re-
source to the map service: user accounts and user-defined places.

Chapter 7, A Service Implementation
We remodel an RPC-style service (the del.icio.us REST-RPC hybrid we wrote cli-
ents for back in Chapter 2) as a purely RESTful service. Then we implement that
service as a Ruby on Rails application. Fun for the whole family!

Preface | xxi

