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Preface

Crystal bases are purely combinatorial objects that are analogous to representations
of Lie groups or Lie algebras. They appeared in the works of Kashiwara, Lusztig and
Littelmann on quantum groups and the geometry of flag varieties. In retrospect,
topics from the combinatorical theory of tableaux such as the famous Robinson-
Schensted-Knuth algorithm and the plactic monoid of Lascoux and Schiitzenberger
fit into the crystal base theory. Crystal bases come up in many unexpected places,
from mathematical physics to number theory.

This book originated from a plan to approach crystal base theory from a purely
combinatorial point of view. It is aimed at graduate students and researchers who
wish to delve into this subject.

It seems that every exposition of crystal base theory needs some powerful method
behind the proofs. In existing expositions on crystal bases such as [Hong and Kang
(2002)], [Kashiwara (2002)] and Littelmann [Littelmann (1997)] this has come from
either quantum groups or Littelmann paths. We have taken a different path, relying
on ideas of Stembridge and Kashiwara for our foundations. Thus we were able to
prove everything combinatorially. In our approach, the link between crystals and
representation theory is made through Demazure crystals.

It is assumed that the reader is familiar with root systems, their classifications,
Coxeter groups, and Cartan types, part of which are reviewed in Chapter 2. A bit
of algebraic geometry knowledge will also be helpful in Chapter 15. In order to help
the reader appreciate certain analogies between crystal bases and representation
theory, we have included two appendices on standard topics in the representation
theory of Lie groups.

Preliminary versions of this book were used for a short lecture series at NCSU
in October 2015, for a quarter special topics class at Stanford and a reading class
at UC Davis in the Winter Quarter of 2016. We are grateful for lots of help from
various people, as explained in the Acknowledgments.

Daniel Bump
Anne Schilling

California, August 2016






Acknowledgments

We would like to thank Graham Hawkes, Patricia Hersh, Henry Kvinge, Peter Lit-
telmann, Neal Livesay, Molly Lynch, Shotaro Makisumi, Eric Marberg, Kirill Para-
monov, Arun Ram, Ben Salisbury, Travis Scrimshaw, Peter Tingley, Kurt Trampel,
and Andrew Waldron for discussion and/or helpful comments on an earlier version
of this book. Special thanks to Peter Tingley for help with Chapter 15, in particu-
lar with the exercises. And we would like to thank Ms. Kwong Lai Fun and World
Scientific for their help with the manuscript.

The second author would like to thank Kailash C. Misra, Daniel Nakano, Brian
Parshall, and Weigiang Wang for the invitation as a principal speaker to the 8th
Southeastern Lie Theory Workshop on “Algebraic and Combinatorial Representa-
tion Theory” (October 9-11, 2015), where she gave a series of lectures on an early
draft of this book.

This work was in part supported by NSF grants OCI-1147463, DMS-1001079
and DMS-1601026 (Daniel Bump), and OCI-1147247 and DMS-1500050 (Anne
Schilling).

vii



o, 75 258 #EPDFIE U7 R) . www. ertongbook. com



Contents

Preface
Acknowledgments

1. Introduction

2. Kashiwara Crystals

2.1 Rootsystems . . . ... .. ... e
2.2 Kashiwaracrystals : « s s s s s ww s 265 8 3.5 5 3 8 55 % & @ & & @
2.3 Tensor products of crystals . . .. . ... ... ... ...,
2.4 Thesignaturerule . . . ... . .. . ... ...
2.5 Rootstrings . .. ... . ...
2.6 The character . . . . . . . . . . . . e e
2.7 Related crystals and twisting . . . ... .. .. ... ........
2.8 Dynkin diagrams and Levi branching . . . . . . .. ... ... ...
Exercises . . . . . .. L e e e e e e

3. Crystals of Tableaux

3.1 Type Acrystalsof tableaux . . . . . .. .. ... .. ........
32 Anexample : s s i s s s uE w6 e E E i 55 P AR KR e G s W
BEXETCISOS o v v v 5 5 5 6 & s & @ @ s E 5 5 5 % 65 50 4 4 v W by 4wy mE

4. Stembridge Crystals

4.1 Motivation and examples . . . . . . ... ..o
4.2  Stembridge axioms . . . . . . ... ..o
4.3 Stembridge crystals as a monoidal category . . . .. ... ... ..
4.4  Properties of Stembridge crystals . . . . .. ... ... ... ...
Exercises . . . . . . L e e e e e e

vil

12
18
22
23
24
25
26
28

31

31
35
36



Crystal Bases: Representations and Combinatorics

Virtual, Fundamental, and Normal Crystals 55
5.1 Embeddings of root systems . . . . .. ... 55
92 Virtualorystals « o w o s 6 5 6 5 5 7835 i mamm s i 8§ 8 5 K- e s 57
5.3  Properties of virtual crystals . . . . . . ... ... ... ... ... 61
5.4 Fundamental crystals . . . . . ... ... oL 63
5.5 Adjoint crystals . . . . . . ... L 66
5.6 Fundamental crystals: The exceptional cases . . . . . . . ... ... 68
5.7 Normalcrystals . o v s o xv s 8 5 5 « 6 ¢ s 5 o mmmE oo 8 6 5 5 4 8 71
5.8 Reducible Cartan types . . . . . . .. ... . ... ... ...... 74
5.9  Similarity of crystals . . . . . . ... L oL 75
5.10 Levi branching of normal erystals . . .. ... ... ......... 76
Exercises . . . . . . . . e e e 78
Crystals of Tableaux II 80
6.1 Column reading intype A . . . . . . .. .. ... ... 82
6.2 Crystalsof columns . . . ... ... ... ... ... ... ..... 83
6.3 Crystals of tableaux . . . . .. .. ... .. ... .. ... ... 88

6.3.1 Crystal of tableaux: Type Cy . . . . . . . . . . . ... ... 88

6.3.2 Crystal of tableaux: Type B, . . . . . . . . . .. ... ... 91

6.3.3  Crystal of tableaux: Type D, . . . . ... ... ... ... 93
BXerciBes s s s s 5 5o 5w @ w s & 5 b £ 8 55 3 % R b A b h s B e s s o 95
Insertion Algorithms 96
71 TheRSKalgorithm . . o « o v v v v 6 ¢ ¢ 6 5 s mmwemmss 53 s 96
7.2  The dual RSK algorithm . . . . .. ... ... ... ......... 105
7.3 Edelman—Greene insertion . . . . . . ... ... ... ... ... .. 107
Exercises . . . . . . . e e 110
The Plactic Monoid 112
8.1  The definition of the plactic monoid . . . . ... . ... ... ... 112
8.2  The plactic monoid and Knuth equivalence . . ... ... ... .. 113
8.3 Crystals and Schensted insertion . . . . .. .. ... ... ..... 116
8.4  Crystals of skew tableaux . . . . . . ... ... ... ... ..... 120
EXErciSses . : ¢ « « ¢ ¢ s 6 s mow 5w w0 5 5 5 523 86 wE e ik 58 s 123
Bicrystals and the Littlewood-Richardson Rule 125
9.1 The GL(n) x GL(r) bicrystal . . .. ... ... ... ........ 127
9.2  The crystal see-saw and the Littlewood—Richardson rule . . . . . . 130

Exercise . . . . . e e 132



10.

11.

12.

13.

14.

15.

Contents

Crystals for Stanley Symmetric Functions

10.1 Stanley symmetric functions . . . . . . . .. .. ... ... ... ..
10.2 Crystal on decreasing factorizations . . . . . .. ... ... .....
10.3 Applications . . . . . . . . . e e e
EXEICISES . v .« v v v v v v v vt e e e e e e e e e e e e e e e e e e e

Patterns and the Weyl Group Action

11.1 String patterns . . . . . . . . . o v i it e e e e
11.2 ‘Gelfand-Tsetlin patterns . . . v v v v o o oo o s« o o 0 s o s 0 s o
11:3 "The Weyl gtolpaChion - s v« v s w5 0 = & & & S0 m 5 55 5 5@ w0
Exercises . . . . . . .. e e e e e e e e

The By Crystal

12.1 Elementary crystals . . . . . . . . . ... ... ... ... ...,
12.2 The crystal By, for simply-laced types . . . . ... ... ... ...
12.3 The crystal B for non-simply-laced types . . . . . . .. ... ...
124 Demazureé erystals I Bos - ¢ s 5 o v s s o w5 50 58 v 5 65 5 5 5 4
Exercises . . . . . . . e e e e e e

Demazure Crystals

13.1 Demazure operators and the Demazure character formula . . . . .
13.2 Demazurecrystals . . . ... ... ... ... ... ... ... ...
13.3 Crystal Demazure operators . . . . . . . . . . . . ... ... .. ..
EXerciSes : o s s v o @i f &5 5 8 605 i3 % 8 8 & & €@ 58 B 56 & 8§ K34

The x-Involution of B,

14,1 The As€ase o v s 5 5 5 5 2 5 5 5 5 5 s 5.5 @ &0 w66 55565 i3 &
14.2 The general case . . . . . . . . . . . .. i
14.3 Properties of the involution . . . . . .. .. ... ... .......
14.3.1 Relation to Demazure crystals . . . . .. .. .. ... ...
14.3.2 Characterization of highest weight crystals . . . .. .. ..
1438 COMMUOT = v o ¢ : mn v 5o vw s 56 6 F @8 EFES B 8w
Exercises . . . . . . e e e e e e

Crystals and Tropical Geometry

15.1 Lusztig parametrization: The As case . . .. ... ... ......
15.2 Geometric preparations . . . . . . . ...
15.3 The Lusztig parametrization in the simply-laced case . . . . . . . .
15.4 Weyl group action . . . . . .. ... .. .. ...
15.5 The geometric weight map . . . . . . ... ... ... ... ...
15.6 MYV polytopes: The Az case . . . . . .. .. ... ... .......
15.7 Tropical Pliicker relations . . . . . . ... ... ... ........

xi

133

133
135
137
142

143

144
149
151
156

157

158
159
164
167
170

172

172
174
174
176

178

179
180
190
190
191
192
193



xii Crystal Bases: Representations and Combinatorics

15.8 The crystal structure on MV polytopes . . . . . . .. .. ... ...
15.9 The %-involution . . . . .. .. .. ... ... ...
15.10 MV polytopes and the finite crystals By . . . . . .. .. ... ...
Exercises . . . . . . . e

16. Further Topics

16.1 Kirillov-Reshetikhin crystals. . . . . .. . ... ... .. ... ...
16.2 Littelmann path and alcove path models . . . . .. ... ... ...
16.3 Kyoto path model . . . .. ... .. ... ... ... ........
16.4 Nakajima monomial model . . . . . . .. . ... ... ... . ....
16.5 Crystals on rigged configurations . . . . .. .. .. ... ... ...
16.6 Modular branching rules of the symmetric group and crystal bases
16.7 Tokuyama'’s formula . . .. ... .. ... ... ... ........
16.8 Crystals of Lie superalgebras . . . . .. .. ... ... .......

Appendix A Schur-Weyl Duality

Al Generalities . . . . . . . .. e e
A.2 The Schur-Weyl duality correspondence . . . . ... ... .....
A.3 Symmetric functions . . . ... ...
Ad See-8aWs . . . . ... e e

Appendix B The Cauchy Correspondence
B.1 The Cauchy identity . . . . .. ... .. .. ... ... ... ....

B.2 Three interpretations of Littlewood Richardson coefficients

B3 Pierisformula . ... .. ... ... ... .. .. .. ... .. ...
B.4 Symmetric group branching rules . . . . .. .. ... ........
B.5 The involution on symmetric functions . . . . . . .. .. ... ...
B.6 The GL(n,C) branchingrule . ... ... ..............

B.7 The dual Cauchy identity . . . . . . .. .. ... ... ... ....
Bibliography

Index

228

228
230
231
232
233
234
234
236

239

239
246
248
250



Chapter 1

Introduction

Crystal bases or Kashiwara crystals are combinatorial structures that mirror repre-
sentations of Lie groups. Historically, crystal bases were developed independently
around 1990 from two independent sources.

On the one hand, [Kashiwara (1990, 1991, 1994)] showed that modules of quan-
tum groups have “crystal bases” with remarkable combinatorial properties. In-
dependently, [Lusztig (1990a,b)] introduced canonical bases from a more geometric
perspective. Quantum groups are Hopf algebras that are “noncommutative” analogs
of Lie groups. A particular class of quantum groups, quantized enveloping algebras,
are deformations (in the category of Hopf algebras) of the universal enveloping al-
gebras of Lie groups. They were described independently by [Drinfel’d (1985)] and
[Jimbo (1985)] to explain developments in mathematical physics. Every represen-
tation of the Lie group gives rise to a representation of the corresponding quantized
enveloping algebra, and Kashiwara showed that these modules have crystal bases
whose properties he axiomatized and proved, using deep methods from quantum
groups.

On the other hand, crystals also came about through the analysis of [Littel-
mann (1994, 1995b)] of standard monomial theory ([Lakshmibai, Musili and Se-
shadri (1979); Lakshmibai and Seshadri (1991)]). Borel and Weil and later [Bott
(1957)| showed that representations of Lie groups can be realized as sections of line
bundles on flag varieties. [Demazure (1974, 1976)] had found additional structure
in these modules. Inspired by work of [Hodge (1943)] on the cohomology of Grass-
mannians, Seshadri and Lakshmibai found convenient bases of these modules of
sections that are indexed by tableaux. Peter Littelmann, in the early 1990’s, rein-
terpreted these bases as paths through a vector space containing the weight lattice
and showed that they may be organized into crystals like those found by Kashiwara
in the theory of quantum groups. [Kashiwara (1996); Joseph (1995)] then proved
that the crystals arising from quantum groups are the same as the crystals arising
from the Littelmann paths.

In retrospect, some older work in the combinatorics of tableaux can he under-
stood in terms of crystals. [Littlewood (1940)] showed that a Schur polynomial,
which is the character of an irreducible representation of GL(n), had a combinato-
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rial definition as a sum over tableaux. In fact, both the irreducible representations
of the symmetric group and the general linear group were known to have bases
indexed by tableaux, and the Robinson-Schensted-Knuth (RSK) algorithm [Knuth
(1970, 1998)] gave bijections that are combinatorial analogs of certain isomorphisms
between such modules of Lie groups and the symmetric groups. Later, [Lascoux and
Schiitzenberger (1981)] gave a multiplicative structure on the set of tableaux, called
the plactic monoid, that is closely related to RSK. All of these topics fit into the
theory of crystal bases and the connections will be discussed in Chapters 7 and 8.
Crystals appear in many other contexts from mathematical physics and combi-
natorics to number theory. We will not attempt to survey all of these here.

In this book, we will limit ourselves to crystals associated to finite-dimensional
Lie algebras, omitting the important topic of crystals of representations of infinite-
dimensional Lie algebras. Within this limited scope, we have tried to prove the
essential facts using combinatorial methods. The facts one wants to prove are as
follows. ‘

Given a reductive complex Lie group G, there is an associated weight lattice A
with a cone of dominant weights. Given a dominant weight A, there is a unique
irreducible representation of highest weight A. There are two operations on these
that we are particularly concerned with: tensor product of representations and
branching, or restriction, to Levi subgroups.

In the theory of crystal bases, one starts with the same weight lattice and cone of
dominant weights. Instead of a representation, one would like to associate a special
crystal to each dominant weight. If the representation is irreducible, the crystal
should be connected. There may be many connected crystals with a given highest
weight, but it turns out that there is one particular one that we call normal. We
think of this as the “crystal of the representation.” More generally, a crystal that
is the disjoint union of such crystals, is to be considered normal.

The operations of tensor product and Levi branching from representation theory
also make sense for crystals. The usefulness of the class of normal crystals is that
the decomposition of a crystal into irreducibles with respect to these operations
is again normal. Moreover, the decomposition of a representation obtained by
tensoring representations or branching a represention to a Levi subgroup gives the
same multiplicities as the decomposition of the tensor product or Levi branching of
the corresponding normal crystals into irreducibles.

There are several ways of defining normal crystals. [Kashiwara (1990, 1991,
1994)] and [Littelmann (1994, 1995b)] gave two different definitions, which then
were shown to be equivalent. We give yet another definition of normal crystals,
based on two key ideas: Stembridge crystals ([Stembridge (2003)]) and virtual crys-
tals ([Kashiwara (1996); Baker (2000)]). For the simply-laced Cartan types, [Stem-
bridge (2003)] showed how to characterize the normal crystals axiomatically. This is
subject of Chapter 4. This approach does not work as well for the non-simply-laced
types, but for these, there is a way of embedding certain crystals into crystals of



