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Preface

This Fifth Edition of Advanced Engineering Mathematics has two primary objectives.

The first is to make available much of the post-calculus mathematics needed and used by
today’s scientists, engineers, and applied mathematicians, in a setting that is helpful to both
students and faculty. Throughout, it is recognized that mathematics provides powerful ways of
modeling physical processes, but that these can lead to false conclusions if misunderstood or
misapplied. This warrants careful attention to details in making correct statements of theorems
and methods and in analyzing results.

The second objective is to engage theory with computational facility. Scientists, engineers,
mathematicians, economists, ecologists, and other professionals often need to calculate things,
moving from theory to practice. This involves acquiring skills in manipulating series, integrals,
transforms, conformal mappings, and other standard objects used in mathematical modeling, as
well as in carrying out calculations to reach reliable conclusions. Successful applications of such
skills can be seen in major projects all over the world—the space shuttle, the Golden Gate Bridge,
Kuala Lumpur’s Petronas Towers, the Odeillo Solar Furnace in southern France, the English
Channel tunnel joining the United Kingdom and France, the Ganter Bridge in Switzerland, and
many others.

To meet these objectives, the following changes have been made in this edition.

® The wide availability of powerful and convenient computer software is an invitation to
probe the relationship between the mathematics and real-world conclusions, connecting theory
with models and the phenomena they describe. Making use of this capability should be an impor-
tant part of a student’s experience. Throughout the text, the student is asked to experiment with
computations. These include generating direction fields and phase portraits, secing the conver-
gence of Fourier series and eigenfunction expansions through graphs of partial sums, observing the
effects of filters on signals, seeing how various parameters and forcing terms influence solutions of
wave and heat equations, constructing waves as sums of forward and backward waves, and using
the discrete Fourier transform to approximate Fourier transforms and to sample Fourier series.

® Partial differential equations are given a reorganized and more detailed treatment. Chapter
16 covers the wave equation, first developing Fourier series solutions on a bounded interval, then
Fourier integral and transform techniques for problems on the line and half-line. Characteristics
are used to solve the wave equations with a forcing term, and transformations are used to deal with
nonhomogeneous boundary and initial conditions. Chapter 17 follows a similar program for the
heat equation, considering first solutions on a bounded interval, then on the line and half-line. New
material on the nonhomogeneous heat equation is included. Finally, a chapter on the Dirichlet
and Neumann problems has been added.

¢ The importance of the Fourier transform in modern science and engineering has been ac-
knowledged by extending its discussion to include windowing, filtering, and use of the N-point
discrete Fourier transform to sample Fourier series and approximate Fourier transforms.
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Preface

® Special functions are given a more thorough, unified treatment. Legendre polynomials,
Bessel functions, and then other orthogonal polynomials are placed in the context of Sturm-—
Liouville theory and general eigenfunction expansions, with specific examples. These are followed
by mean square convergence, the significance of completeness of the eigenfunctions, and the
relationship between completeness and Parseval’s theorem. Haar wavelets are discussed in the
context of completeness and orthogonal expansions.

¢ The treatment of systems of linear, ordinary differential equations has additional material
on the case of repeated eigenvalues of the coefficient matrix.

¢ The discussion of the qualitative behavior of nonlinear systems has more details on phase
portraits and the classification of critical points and stability, including Lyapunov’s criteria.

® The sections on determinants have been reorganized to provide greater clarity in under-
standing properties of determinants.

¢ The section containing answers to odd-numbered problems has been expanded, including
details for some of the more difficult problems, as well as more illustrations.

¢ Behind the mathematics we usually find interesting people and events. Some of their stories
are told in Chapters 26 and 27, but historical perspectives are also included throughout the text.
For example, Section 14.9.1, on the fast Fourier transform, begins with a review of the personal
interactions that led to the publication of the famous Cooley—Tukey paper, the first detailed
description of the algorithm.

The chart opposite offers a complete organizational overview.
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1.1 Preliminary Concepts

Before developing techniques for solving various kinds of differential equations, we will develop
some terminology and geometric insight.

1.1.1 General and Particular Solutions

A first-order differential equation is any equation involving a first derivative, but no higher deriva-
tive. In its most general form, it has the appearance

F(x,y,y) =0, (1.1)
in which y(x) is the function of interest and x is the in&ependent variable. Examples are
y-y*—e =0,
y—-2=0,
and
y' —cos(x) =

Note that y’ must be present for an equation to qualify as a first-order deferennal equation, but x
and/or y need not occur explicitly. .

A solution of equation (1.1) on an interval / is a function ¢ that satisfies the equation for all
x in I. That is,

F(x,9(x),¢'(x)) =0 forallxinl.
For example, ‘

o(x)=2+ke™



CHAPTER 1  First-Order Differential Equations

is a solution of
y+y=2
for all real x and for any number k. Here I can be chosen as the entire real line. And
o(x) =xIn(x) +cx
is a solution of

7

y=2+1
X

for all x > 0 and for any number c.

In both of these examples, the solution contained an arbitrary constant. This is a symbol
independent of x and y that can be assigned any numerical value. Such a solution is called the
general solution of the differential equation. Thus,

px) =2+ke™

is the general solution of y' + y = 2.
Each choice of the constant in the general solution yields a particular solution. For example,

f=2+e" gx)=2-¢7",
and
h(x) =2 — +/53¢~*
are all particular solutions of y’ + y = 2, obtained by choosing, respectively, k = 1, —1, and
—4/53 in the general solution.
1.1.2 1mp1icitly Defined Solutions
Sometimes we can write a solution explicitly giving y as a function of x. For example,
y=ke™*

is the general solution of

’

y ==Y

as can be verified by substitution. This general solution is explicit, with y isolated on one side of
an equation and a function of x on the other.
By contrast, consider

,_ 2y’ 42
y = 3x2y2 4 8e¥’
We claim that the general solution is the function y(x) implicitly defined by the equation
22y +2x + 2% =k, (1.2)

in which k can be any number. To verify this, implicitly differentiate equation (1.2) with respect
to x, remembering that y is a function of x. We obtain

2xy? +3x2y%y + 24 8e¥y =0,

and solving for y’ yields the differential equation.

In this example we are unable to solve equation (1.2) explicitly for y as a function of x,
isolating y on one side. Equation (1.2), implicitly defining the general solution, was obtained by
a technique we will develop shortly, but this technique cannot guarantee an explicit solution.



