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DEDICATION

To the students and masters of these elegant numerical methods, as well as future numerical
methods yet to come.
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PREFACE

This book stems from our experiences in teaching numerical methods to both engineering
students and experienced, practicing engineers in industry. The emphasis in this book deals
with finite element, boundary element, and meshless methods. Much of the material comes
from courses we have conducted over many years at our institutions, including AIAA home
study and ASME short courses presented over several decades, as well as from the sug-
gestions and recommendations of our colleagues and students. There are numerous books
on applied numerical methods, many of them being finite element and boundary element
textbooks available in the literature today. However, there are very few books dealing with
meshless methods, especially those showing how nearly all of these numerical schemes
originate from the fundamental principles of the method of weighted residuals. We find that
when students once master the concepts of the finite element method (and meshing), it’s
not long before they begin to look at more advanced numerical techniques and applications,
especially the boundary element and meshless methods (since a mesh is not required). Our
intent in this book is to provide a simple explanation of these three powerful numerical
schemes, and to show how they all fall under the umbrella of the more universal method of
weighted residuals approach.

The book is divided into three sections, beginning with the finite element method,
then progressing through the boundary element method, and finally ending with the mesh-
less method. Each section serves as a stand-alone description, but it is apparent to see how
each conveniently leads to the other techniques. We recommend that the reader begin with
the finite element method, as this serves as the primary basis for defining the method of
weighted residuals.

We begin by introducing the basic fundamentals of the finite element method using
simple examples. Particular attention is given to the development of the discrete set of al-
gebraic equations, beginning with simple one-dimensional problems that can be solved by
inspection, and continuing to two- and three-dimensional elements. Once these principles
are grasped, we then introduce the concept of boundary elements, and the relative ease with
which one reduces the dimensionality of a problem (a great reliet when solving large prob-
lems, or problems with infinite domain boundaries). The boundary element technique is a
natural extension of the finite element method, and becomes greatly appreciated by users.
While the method has some limitations regarding the wide range of applications afforded
by the finite element technique, it is still a very popular and useful method. It is finding use
in crack growth and related applications dealing with structural mechanics, and couples
nicely with finite element meshes.

The more recent introduction of meshless methods is rapidly becoming a method now
being used by practitioners of both finite element and boundary element methods. The
method is simple to grasp, and simple to implement. The power of the method is becom-
ing more appreciated with time. The meshless method has been shown to yield solutions
with accuracies comparable to finite element methods employing an extensive number of
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elements, yet requiring no mesh (or connectivity of nodes). While there is much left to
discover with regards to some of the formulation and parameters used in the development
of the meshless method, it is a method with much promise and wide spread applications.
We have used it for structural analysis, fluid flow, heat transfer, and various biomedical
applications.

We provide computer files in both MathCad and MATLAB that are used to illustrate
the setup and subsequent solutions of these example problems. These computer codes are
not elegant nor optimized for efficiency, but do provide the reader with the logic and steps
necessary to obtain solutions. The code listings are available from the www.fbm.centecorp.
com website, along with example data files.

There are many commercially available finite element codes available in the market,
and a few that are free via the web. We tend to use COMSOL because of its ease of use, and
it multiphysics capabilities. COMSOL is a very versatile finite element code that handles a
wide variety of applications, including fluid flow, heat transfer, solid mechanics, and elec-
trodynamics. This package runs on PCs.

Because many finite element and boundary element books are written for the structur-
ally oriented engineer, those nonstructural engineers and students more interested in the
fluid-thermal fields must sift through undesired concepts and applications betore finding
a relevant problem area. We have found that students quickly grasp the basic concepts of
heat transfer and can easily follow the principles of heat flow and one degree of freedom
(temperature). A simple generic approach is utilized in this book that is focused on the
transport and diffusion of heat (scalar transport); we then illustrate how one can extend
these basic approaches to wider applications, with emphasis on the nonlinear equations for
fluid motion.

We wish to thank our colleagues and former students who have greatly contributed to
the material presented in this book. We began some years ago by offering several free short
courses stemming from the information within this book to our colleagues in the ASME
Heat Transfer Division. We gaged their reactions and interests, and have incorporated their
suggestions in arranging the presentation of information and material. We especially wish
to thank Erik Pepper and Mrs. Julie Longo for their efforts in editing the manuscript and
graphical images in this book, and to our ASME Press Editor, Mary Grace Stefanchik, for
her helptul comments and editorial assistance; we also wish to thank our former students
and colleagues for their patience in reading and suggestions for revising the manuscript.

Darrell W. Pepper
Alain Kassab
Eduardo Divo
September 9, 2014
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N N D N T T L BN G S
THE METHOD OF WEIGHTED RESIDUALS (MWR)

This book is focused on three numerical methods utilized for analysis of field problems
in heat transfer and fluid flow: the Finite Element Method (FEM), the Boundary Element
Method (BEM), and the Meshless Method (MM). The three numerical methods discussed
in this book, and for that matter, most of the other commonly utilized numerical methods,
including Finite Difference Method (FDM) [1] and Finite Volume Method (FVM) [2,3],
can be formulated in the single over-arching framework of the Method of Weighted Residu-
als (MWR) [4].

In order to develop the MWR formulation, let us consider a typical steady-state heat
transfer problem where the temperature, T(x,y), is governed by the heat conduction equa-
tion and subjected to either first kind (prescribed temperature) or second kind (prescribed
temperature gradient) boundary conditions,

GE.. V7T(x,V)+ug=0 reQ y Iy
A

B.C.s: T(x,y,)=T, rely & T(xs,¥s)=T,

‘\
T = R,
n S -
(X5, V5) ,-s
T(x,y) Iy
o _g
0N s, y,)
> X

where 7. is the position vector to a point (x,,y,) on the boundary I" binding a domain Q. As a
note, we choose this problem as an illustrative example, and the procedure we now outline
can apply to any other governing scalar or vector linear or non-linear equation subject to
any other type of boundary condition not listed above.

The basic premise of MWR is to approximate the temperature by a set of trial func-
tions, @,(x, y), as

N
T(x.y)= Y, 050,(x,y) (1)
J=1
We are free to choose to have localized or global support, with the only obvious require-
ment that the trial functions must be linearly independent. The expansion coefficients, ¢,
may have physical meaning, such as representing nodal temperatures in FDM and FVM,
or may be arbitrary.
Introducing Eq. (1) into the governing equation leads to a domain residual, Ry(x, y),

Ro(x.y)=V?T(x.y)+ug (x.y)e Q )

Introducing Eq. (1) into the boundary conditions leads to boundary residuals. In particu-
lar, this leads to a residual, R, (x, y), on the T'; portion of the boundary where a first kind
boundary condition is imposed

R, (x,y)=T(xuy)-T,  (x,y)eTly 3)

Xi
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Localinterpolating Globalinterpolating
trial function, ¢j(X)

i=1 i=2 =3 .. i1 i i+1 .. i=lL-1i=IL

X=0 X=L

! . ey
Left boundary Interior grid points: Right boundary
grid point: i=1 i=2,3...I11-1 grid point: i=IL

Figure 1. [llustration of 1-D local and global trial functions, ¢,(x).

and to a residual, Ry, (x, y), on the ', portion of the boundary where a second kind boundary
condition is imposed
T (x,, v,
Rr, (X, V) = "A(A;;;) —dqy ('x.\'s y‘\‘)e rq (4)
! on
Depending on our choice of trial functions any of these residuals may be zero, and that
choice broadly differentiates numerical methods from a MWR perspective as being:

1. Interior methods: trial functions satisfy the boundary conditions, and this leads to a
domain residual only.

2. Boundary methods: trial functions satisfy the governing equation, and this leads to
boundary residuals only.

3. Mixed methods: trial functions satisfy neither the governing equation nor the bound-
ary conditions, and this leads to both a domain and boundary residuals.

The FDM, FVM, and FEM are mixed methods with trial functions that have local support.
The BEM is a boundary method, and the MM is a mixed method with trial functions that
have, depending on the technique, either global or local support as referenced Fig. 1, with
the latter the most widely used in practice.

The next task in MWR is to determine the unknown expansion coefficients by mini-
mizing the residual. To this end, weighting functions are introduced: (a) a weighting func-
tion, W(x, y), for the domain residual Ry(x, y); (b) a weighting function, wr, (x,y), for
the boundary residual, R (x,y), on portion I'; of the boundary; (c) a weighting function,
wry(x,y), for the boundary residual, Ry, (x,y), on portion T, of the boundary. A weighted
residual statement is then formulated to solve for the expansion coefficients,

Jp RaCx, y)wa (6, )dQ+ [ Rey (6, 3)wrr (e, 0T+ [ Re, (6, 3)wr, ;06 yMT=0 j=12.N (5)
Q Ir

ry
What further differentiates MWR techniques from each other is the choice of the weighting
functions that leads to the following common minimization techniques:

1. Collocation Method: A set of collocation points, 7, is distributed on the domain and
the boundary and the choice for the weighting function is the Dirac delta function,
O(F —F), acting at each one of these points,

wi(7)=8(7 -7) (©)
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Figure 2. Plot of 1-D delta sequence acting at x,= 2 and tending to Dirac delta function as k — 0,
and a Dirac delta function acts at a point (x,y;) in a 2D domain.

The Dirac delta function is defined by its action on other functions, namely
j O(x—x;)f(x)dx=f(x;) and ‘[ o(x —x))dx=1 (7

The Dirac delta function can be approximated numerically by any number of so-called delta
sequences [6], for instance the following sequence obeys the property of a delta function
in the given limit,

e
8(x - x)=lim| £~ 8
(x=x;) it Jrk (8)

as seen in Fig. 2. Multidimensional delta functions can be constructed as products of 1D
delta functions. In Cartesian coordinates for instance: 6(x, y; x; v) = 6(x—x,)é(y-y,). Col-
location MWR is used to solve the governing equations in strong form and is the method
employed to formulate the FDM and strong-form meshless methods. The FDM is a col-
location MWR with local shape functions, typically taken as polynomials, the collocation
points, 7, are called the mesh/grid points and are produced automatically by mesh genera-
tion procedures, the expansion coefficients, o, are the FDM nodal temperatures.

2. Subdomain Method: The domain € is subdivided into N-subdomains €2, and the
weighting function is chosen to be

wi(F)=1 if FeQ;

The FVM is a subdomain MWR with local shape
functions, typically taken as polynomials, the sub-
domains are called finite volumes and are generated
automatically by mesh generation techniques, and
the expansion coefficients, o, are the FVM nodal
temperatures. —> X
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3. Galerkin Method: The weighting function is chosen to be the expansion function
itself, that is

w;(F) =¢;(7) (10)
The FEM is most often formulated using Galerkin MWR, using local shape functions,

typically taken as polynomials, that are defined over a set of N-subdomains €, called finite
elements, and the expansion coefficients, o, are the FEM nodal temperatures.

4. Least-Squares: The weighting function is chosen to be the partial of the residual
with respect to the expansion coefficients, ¢, that is

wi(F)=-—"~" (11)

q‘;ﬁkg(, 8'3@(1 )—dQ Lo gpRAFIQ (12)
a.‘

which is obviously a least-square minimization with respect to the expansion coetficients,
o;. There are some FEM formulations and meshless method formulations that utilize the
concept of least-squares. There is another MWR formulation that minimizes using mo-
ments of the residual and the reader is referred to [4] for details on that method. The method
of moments MWR finds applications as a numerical method in electromagnetics.

MWR EXAMPLE PROBLEM: FDM, FVM, FEM, BEM AND MM

Let us consider a simple 1D problem where the temperature is governed in aregion X € [0, L]
by the following non-homogeneous differential equation and first kind boundary conditions,

T(x)
GR: 41 T T+x=0  xel0.L] | |
dx? | I
B.C’s: T(0)=T X=0 X=L
T(L)=T,
The exact solution to this problem is readily obtained as,
T(x)=T,cos(x)+ T+~ 7, cos(h) sin(x)—x (13)
sin(L)
with the exact derivative of the temperature given by
9(x) =T, singx)+| LFL=Tecos) oy (14)
sin(L)
This temperature profile is illustrated in Fig. 3 for values of T, = 15 and T, = 25. We shall

use this problem to illustrate the five numerical methods, FDM, FVM, FFM, BEM, and
Localized Collocation Meshless Method (LCMM) formulated by the MWR principle cor-
responding to the particular method. The final result of the approximation process is an
algebraic set of equations that are the discrete analog of the governing equation and bound-
ary conditions that is solved by an appropriate numerical procedure.
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30, T T T T
25 '—'—"'_'_’_'_'——'M
T(x)
201 ]
15 1 1 ] 1
0 0.2 0.4 0.6 0.8
X

Figure 3. Temperature distribution for the MWR example problem with 7, = 15 and T, = 25.

Finite Difference Method (FDM) - Collocation MWR with Local Polynomial
Trial Functions

In the FDM [ 1], we lay out a set of i = 1,2...IL grid points to discretise the domain x € [0, L].
This is usually accomplished by a grid generator. We identify the interior grid points, i =
2,3..IL— 1 and boundary grid points, i = | and i = IL. Here the grid spacing, Ax=L/(IL—1),
is uniform, although in general this is not the case as grid adaption is used to resolve regions
of high gradients. The solution is sought at discrete locations, x;, and denoted as T(x;,) = T,, or
the FDM nodal values of the temperature. Using collocation MWR, and placing the Dirac
delta function at any interior node, x;, we integrate the residual over the domain

tof °T
J| €5 +T+x |8(x-x)dx=0 for i=2,3..IL-1 (15)
ol dx°

and there results the residual equation at the grid point x;,

-
{i-—zj-+7~"+x]
dx”

Using a local quadratic polynomial approximation for, T(x), over grid points i — 1, iand i + 1,
with the origin x = 0 located at the grid point x;,

=0 for i=2,3..[L-1 (16)

Xi

Ty T T
7~'()c)=(:(|+053x+0(3x2 *—=@ (17
i-1 i i+l

i=1 i=2 i=3 .. i1 i i+1 ... i=ll-1 =L
X=0 X=L
o . s
Left boundary Interiorgrid points: Right boundary
gfld point: i=1 i=2,3...IL-1 grld point: i=IL

Figure 4. Discretization of the 1D domain used in the FDM.
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one finds that

T =7+ Tzl | o [ T 22Tt T 0 (18)
2Ax 2Ax

and upon introducing the above local approximation for the temperature into Eq. (16), we
arrive at the interior FDM algebraic equation,

T =21 +Tin +T+x,=0 for i=23..IL-I (19)
sz

that is re-arranged in the tri-diagonal form
l&xi - —A)CZ : A.X'Z & : (20)

Defining the FDM coefficients, a; = (lej J b; = (l - Z?c? } ¢ = (if ),d,- =—x;, and apply-

ing the first kind boundary conditions at x =0 and x = L, the following set of tri-diagonal
FDM equations is readily assembled and efficiently solved by the Thomas Algorithm,

(1 0 o0 0 ollrn] [T
ds bp_ Cy 0 0 Tz d2
0 & &b 6 - OB 4] @1
0 0 a,, b, cnal|Tua dy,
o 0 0 0 0 U T T,
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Using IL = 6 grid points, the MATHCAD spreadsheet calculation for the FDM is provided

below:

, Boundary Element, and Meshless Methods

Finite Difference Method:

...no of grid points

Ax = —— Ax =02 .... mesh spacing
1L~ 1
X i=(i - 1)-Ax ... x-location of ith grid point
| 2 | .
ai=—— b= 1-— (e ...FDM coefficients
9 i 2
Ax” Ax” Ax”
A =0
1.
di =0 ...initialize problem
Load FDM equations
- ...load left boundary condition
A =1
1.1
d =To
1
=23 0L~ 1 ...load interior FDE's
ji-1 =8
A .:=b
1.1
Lo+l &
d. i=-x
I
=1L
A =1 ...load right hand side temperature
d ':l - boundary conditions FDE
=
=120
10 0 0 0 0 5
25 -9 25 0 0 o0 02
0 25 =49 25 0 0 —04
A= 0 0 25 —49 25 0 d= 0'6 ...echo FDM matrix and RHS
0 0 0 25 -49 25 08
00 0 0 0 | 3
25
Trpm =A ...solve
emEp. = ....compute relative eror
1
TFI).\‘Ii - T(‘x) - "'"FDMI - o Cnmpa:isml off’lDM and :]exac! temf)cmlure
e R
15 15 0 24 e
18.73251 18.72608 3.437°104| Tgpam 220 ,o°
! .
21.70772 21.69763 4.653-104| ©oo 20- o #
23.79863| | 23.78822] | 4375104 0 e
24.91359 24.90653 2.833- 104 L
1
5 25 0 M ;
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Finite Volume Method - Subdomain MWR with Local Polynomial Trial
Functions

In the finite volume method (FVM) [2, 3], the same dis- ﬁnite VOlume, Q,‘
cretization as in Fig. 4 may be used, except that now a
subdomain (finite volume) Q; € xi_%,xH% surrounding Ti, T; T
each grid point x; is defined to extend from, x , the half ® ® @
2
way mark between i — | and i, and x| located at the half- R
i+
way mark betweeniandi+ 1.1In this case the subdomain
X
MWR is applied and i x“;
([T -
j o +T+x w)de=0  for i=2,3...IL—1 (22)
ol dx
leads to
ri+-I
j“ [%—T +T+x]a’x =0  for i=23../L- (23)
2
X

fiac=
2

since w/{x) = 0 outside the subdomain €,. Integrating the second derivative leads to

+ [ (T+x)dx=0  for i=2,3..IL-] (24)

Noting that the first two terms are related to the flux in and out of the subdomain (finite
volume) €2, and this expression integrates the source term over the finite volume, unlike
FDM that collocates and samples the generation term at the grid point, the FVM expresses
a conservation principle on the grid. This is a distinction that becomes very important in
non-linear and multi-dimensional problems. We are now left with introducing the approxi-
mation for T'(x) to arrive at the FVM algebraic analog. In FVM, various local interpolations
are utilized. We shall use local linear interpolation between grid points to evaluate the 7(x)
at the finite volume faces, so that,

TH‘I + 71’ + ﬂ+l _7; X f()r X€E [X,‘, xf+|]
2 Ax

(25)
T +T +(T;' —Tig

T(.X') =0 +0hHXx =

x  for xe[xi_,x]
2 Ax

Resulting in the following expressions for the derivatives in Eq. (24),

dar

= ¢ (26)
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For consistency, using the trapezoidal rule that integrates a linear interpolation, and the
interpolation we developed in Eq. (25), the integral of T(x) over the finite volume is evalu-
ated as

PO
(e

f e Ax 3Ax Ax
J- T(x)dx _(8 JT,‘—H‘(*L‘“ JTI‘*‘( 3 )THI (27)

Integrating the source term analytically over of finite volume and putting it all together,
Eq. (24) becomes

R D O C A raa
Ax Ax 8 4 8 2| Hy 5

Diving by Ax, we arrive at the FVM algebraic analog,

1o 3 2 L1 [
et [T+ -5 [T+ +— [Ta=—=|x 1 —x 29
(sz SJ ‘ [4 Ar)r (M 8) - 2(:«»—; f-;} 9

3 1
Defining the FVM coefficients, a,~=(%+l).b,-=(——727),c,»=( 1,+-—),d,-=
Ax- 8 4  Ax Ax® 8

1 .
—i(,\" 1 +x 1 |, and applying the first kind boundary conditions at x =0 and x =L, we

i+
2 2

arrive at the same tri-diagonal form as in Eq. (21), except with different coefficients. Again
using IL = 6 for consistency, the MATHCAD spreadsheet for the FVM implementation and

its solution is provided:
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Finite Volume Method:

...FVM coefficients

A =0
i
d;:=0 ...initialize problem
Load FVM equations
=1 ...load left boundary condition
A =1
N
d =To
|
i:=2.3.IL-1 ...load interior FDE's
"\l.l-! =a
A =b
1a)
AI. 1 =e
di.:"{l - 1)-Ax
=1L
A =1 ...load right hand side temperature
y ’_"_,” boundary conditions FDE
=
r=1,20101
| 0 0 0 0 0 5
-02
25125 -4925 25125 0 0 0 02
0 25125 ~925 25135 0 0 g
A= -
! 0 0 25125 —4925 25025 0 98
0 0 0 25125 4925 25125 08
0 0 0 0 0 | 23
. =
Tpym =A solve
erpym = ....compute relative error
I
" s Comparison of FVM and exact temperature
Tavnr = 1(x) = arves - N and exact temperature
FVM, (‘1) FVYM, 2% . . )
15 15 0 241 T
18.7229 18.72608 1.699:104| Tpywy 221 Lo 7]
1 o
21.69264 21.69763 2,299'104| ©o0 20- . F
B78308| | Bossz2| | 2162104 YV sk 7
24.90304 24,90653 1.4-104 "‘;" ]
L 1
25 25 0 "‘l 2 3 6




