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Preface

NUCLEAR techniques have undergone great development during the past twenty years,
and methods which at best were experimental have now- become routine. Nowhere
is this more true than in the field of agriculture and biology, where Cyril Comar
published his classic as long ago as 1955.

Probably the author of any textbook primarily dealing with well-established facts
requires to justify himself! However, I have had the feeling that existing texts did not
do justice to the subject, and/or were unnecessarily theoretical. It is very easy to make
a text concerned with nuclear techniques difficult and complex, while hiding the
essential fact that the principles and methods are usually quite straightforward. It is
not so easy to estimate what to leave out as being unnecessary for a basic understanding,
and I hope that in attempting to keep the text straightforward 1 have not missed out
anything essential.

The text material has arisen in various ways: some had been previously written for
other purposes e.g. lectures on various occasions, about half has been especially
written.. As the book is not a ‘‘committee book’” obviously the author knows some
parts less well than others, but I hope that spécialists will not be too unhappy at my
treatment of their subjects. It need hardly be ‘said that the references are not meant
to be exhaustive. They have been chosen to illustrate a point, to amplify and to show
the scope of techniques. In many cases, others could have equally well been chosen.

Hardly any scientific textbook stands alone: it is complementary to other texts. For
those instructors organizing a laboratory class in soil-plant relations and seeking ideas
for class experiments then the IAEA Tech. Rept. Series No. 171 (IAEA, 1976) can
be recommended, while plant breeders will find the FAO/IAEA Manual on Mutation
Breeding, 2nd Ed. (IAEA, 1977) an invaluable sourcebook.

1 am happy to acknowledge my debt to past and present colleagues from whom 1
have learned much. However, 1 have had a little difficulty with specific references,
due to the material having been put together over quite a long period, so if any people
feel that their work has not been properly acknowledged I trust that they will accept
my apologies. | should particularly like to thank Dona Diva Athié for invaluable help
with the manuscript.
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CHAPTER 1

The Nature of Isotopes
and Radiation

THE ATOM

All matter is composed of atoms. An atom has a structure resembling the solar
system, consisting of a positively charged nucleus, occupying little space but ¢on-
taining nearly the whole mass of the atom, while around the nucleus revolve the
negatively charged planetary electrons. The diameter of the atom is about 10~* cm
or 1 Angstrom Unit (A) while the diameter of its nucleus .is about 10-'2 cm. The
nucleus consists of protons (symbol Z), particles having a positive charge, and neurrons
(symbol N) without any charge but with a mass nearly that of a proton. The proton
is identical to the nucleus of the hydrogen atom.

The electrons, which are 1/1840 the mass of a proton, are arranged in a series of
orbits and balance the positive nuclear charge due to the protons, thus giving a neutral
atom. We speak of the orbits of the electrons being arranged in shells, and we identify
them as K, L, M, N, O and P shells, from the innermost orbit outwards. There is only
one electron in each orbit but there is more than one orbit in each shell, K containing
2 orbits, L containing 8 orbits, M with 18 and N with 32 orbits. If an electron is within
its own orbit it is not radiating energy, but if an external force*acts on it the electron
jumps into another orbit with the liberation of a quantum of energy. The lowest energy
orbits are the inner ones and these are the most stable. An electron may pass into
successive orbits each nearer the nucleus, losing energy at each jump until it achieves
‘the smallest possible orbit, when the atom is in the normal state. It will’be seen that
an atom consists largely of empty space, its overail size being determined by the
outermost orbit.

In the neutral atom the charge on the nucleus, the atomic number (symbol Z=
number of protons), always equals the extranuclear electrons. The extranuclear elec-
trons determine the chemical properties of an element, and therefore an element may
be defined as a substance composed of atoms with the same net positive charge on
the nucleus, i.e. having the same atomic number. The number of protons in the nucleus
is characteristic of a particular element, though the atoms of an element need not
necessarily have the same number of neutrons in the nucleus. The sum of the protons
and neutrons is known as the mass number (symbol M) and corresponds to the atomic
weight of the element. The term nuclide is a general expression describing a species

1



2 | Nuclear Techniques in Agronomy and Plant Biology

of atom as characterized by the number of protons and neutrons in its nucleus. Atoms
of an element which have a different number of neutrons, N, but the same number
of protons, Z, that is they are nuclides having the same atomic number but with a
different mass number, are called isotopes.

The relationship of neutrons and protons in the constitution of isotopes is well
illustrated by the simplest case of the isotopes of hydrogen. There is common hydrogen
with one proton, but no neutrons; deuterium, or heavy hydrogen with one proton and
one neutron; and tritium,- a radioactive form of hydrogen with one proton and two
neutrons. Thus these nuclides have the same number of protons but a different number
of neutrons. Having the same number of protons they naturally have the same number
of extranuclear electrons, and are the:efore isotoper having the same chemical prop-
erties. The nucleus of the deuterium atom is known as a deuteron and is an important
particle in certain reactions (Chapter 2). Figure 1.1 illustrates the classicai example
of the isotopes of hydrogen and their comparison with helium, while Fig. 1.2 contrasts
the structure of some of the isotopes of carbon and nitrogen.

-ISOTOPES

Isotopes are therefore slightly different forms of the same element, having the same
chemical properties and characteristics, but each isotope having a slightly different
atomic weight or mass number. It is this vital difference which enables us to make
such good.use of them, as a naturally occyrring element either exists in the one isotope
form, or if it exists in more than one foym we know the characteristic properties. If

- therefore we take a minute amount of a ¢g-¢ isotope of an element we can use it as
a tracer to follow the behaviour of muchliarger amounts of the common isotope of
the same elemert.

We distinguish between the isotopes of an element by writing the mass number as
a superscript alongside the symbol of the element, e. g. '*C and “C for carbon, *'P

and *P for phosphorus, and "“N and "N for nitrogen. Formerly, and still in quite
common practice, the mass number was written as right superscript e.g. C'%, P32, and
N'*, Occasionally the atomic number, Z gnd the number of neutrons, N, are also
given with the symbol of the element, t¢cTormer as a left subscript and the latter as
a right subscript according to the generai formula MX, where X is the chemical
symbol, e.g. '!C, for carbon-11 and ¥Co,, fwrcobalt-GO Isotopes may be of two
kinds, radioactive and stable.

A number of radioisotopes occur naturally in very small amounts, such as potassium-
40, but the major contribution to biological research has come from radioisotopes
artificially produced in nuclear reactors.

Radioactive Isotopes

Radioisotopes are unstable, that is, they undergo spontaneous disintegration and
give off atomic particles, as a stream of radiation, which can be of different types. -
The emission of atomic particles can be visualized as flashes of invisible “light’’.
The ‘atomic pamcles given off can be recorded by means of X-ray ﬁlm or usually
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more conveniently and precisely by Special electronic devices. The flash of. energy

in the form of an atomic particle enters a gas-filled Geiger-Miiller tube or other type

of detector, where it is converted into electrical energy and is registered by a counter.
. - >

Units

The rate of spontaneous disintegration, or decay, of an isotope is used as an in-
dication of the amount of radioactivity present, and from this derivks the unit of
radioactivity, the Curie (Ci). The Curie is defined as: The amount of.any radioactive
material in which 3.7 X 10'° atoms disintegrate per second. In experimental practice
in biology, a Curie-is quite a large amount of radioactivity and smaller fractions are
usually referred to: e.g. the millicurie (mCi) which is 1/1000 of a Curie and the
microcurie (uCi), equivalent to 10-¢ Ci. Absolute activity, or disintegration rate, is
expressed as disintegration per second (d.p.s.), or per minute (d.p.m.). These rela-
tlonshlps are summarized in Table 1.1. It will be apparent that using the relationship
IpCi = 2.22 d.p.m. or 1uCi = 37,000 d.p.s., activities expressed as “dnsmtegra-
tions’’ can readily be converted to Ci units.

TABLE 1.1
The relationship of units of radioactivity to absolute disintegration rate

——— —

Decimal Units of radioactivity Disintegration rate
1 1 Ci = | Curie = 3.7 x 10" d.p.s.
or 2.22 x 102 d.p.m.
x 10-3 . t mCi = I millicurie = 3.7 x 107" d.ps.
x 10-¢ 1 uCi = | microcurie = 3.7 x 10¢ d.p.s.
x 10-° 1 nCi = | nanocurie = 37 x 10 d.ps.
X = 1 picocurie = 3.7 x 10-2 d.p.s.

10-12 1 pCi
. or2.22d.p.m.

The S.1. unit of radiation is the becquerel (Bq) based on tlie reciprocal second, as the physical dimension
of activity is time to the power minus one (s~'). There is some resistance to adopting the becquerel because
of its inconvenient dimension: thus 1 Ci = 3.7 X 10" Bq, or 1 uCi = 37 kilo Bq, and 1 mCi = 37 mega
Bq. The curie-related units are retained in this book.

Specific Activity

In radioisotope experiments the absolute amount of radioactivity is seldom required
and is therefore not measured, but comparative activity is recorded as pulses or counts
per minute (c.p.m.) or as counts per second (c.p.s.). The counts from the ‘‘unknown"’
‘sample are then referred back to a ‘‘standard’’ of known composition and countyate.
At this point we should understand the concept of specific activity. A radioisotope is
most often accompanied by stable isotope, either in the initial preparation that is used
for the experiment or when it is subsequently incorporated into biological material.
Specific activity is then the amount of radioactivity per unit weight (or volume) of
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total element present, including both active and stable isotopes. Various expressions
may be used, such as Ci/g, pCi/g, Ci/mole, pCi/ml, c.p.m./mg, etc.

Radioactive Decay and Half-life

An important decay characteristic of a radioisotope is its half-life. The half-life of
a radioisotope is- defined as the time required for half of the radioactive atoms to
undergo decay, or in other words for the radioisotope to “‘lose half its radioactivity’’.
After the first half-life only half the original number of radioactive atoms remain; after
the second half-life only a quarter remain; after the third only an eighth of the original
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FiG. 1.3 Half-life of a radioisotope: the relationship of radioactivity to time, (a} linear plot
(b) semi-log fMbt.

activity remains, and se on, as shown in Fig. 1.3(a). The half-life of an isotope may
vary from seconds to hundreds of years, e.g. ''C (¢, = 20.4 minutes), K (1, =
12.44 hours), *P (1,, =. 14 days), "“C (1,, = 5568 years). The rate of decay of any
isotope is a basic property and cannot be altered by any treatment such as freezing
or heating. Given the initial radioactivity of a preparation and thé half-life of the
isotope it is easy to determine graphically the activity at any subsequent time by
plotting the decay curve: activity V time. If plotted on semi-log paper a straight line
will be obtained due to the exponential nature of radioactive decay as shown in Fig.
1.3(b).

A more fundamental hut often less convenient manner of expressing the decay
characteristics of a radioisotope is by means of its decay constant, N. The decay
constant is the fraction of the number of atoms of a radioisotope which decay in unit
time, and is expressed in terms of reciprocal time. It is established as follows from
the fact that the number of disintegrations per unit of time is a constant fraction of
the number of radioacfive atoms present at that time:
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The activity, A* of a substance is in effect its decay intensity, and this is proportional
to the number of radioactive atoms. which are present. Thus if dN s the disinte-
gration ‘rate, N the number of radioactive atoms present at time ¢, and A is the decay
constant, then
A*=—— =N (1
. dr .
This equation is known as Rutherford’s equation and the minus sign is used to indicate

the decrease in the number of atoms with time.
Rearranging to obtain A: :

A= -5 | )

The decay constant is directly related to the half-life. If the differential equation
(1) is integrated between the limits of N, and N, and 1, and 1, where N, and 1,
respectively represent the number of radnoactive atoms present at zero fime, then

= Y
and In = NN: = —\t 4)
giving, 2. 3log— =-N &)
or in exponential form N = Ne™™ (6)

e M is known as the decay factor, f.

The expressions decay constant and half life are readily convertible. From equation
(6) it is apparent that the time recuired for half the original activity to decay is
independent of the initial number ¢! atoms. So if the time required for the original
activity to decrease by a half is 1., then: :

Ya Ny = Nee™'y, _ )

and M, = 1n2 = 0.693 : ®
or A= 0'693, and¢, = 0.693 )]
1, \

For convenience in practical tracer work, the half-life is mostly used, rather than
the decay constant. It may be determined graphically, or alternatively if it is already



