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PREFACE

This book addresses the needs of several groups of profes-
sionals involved in medical diagnostic ultrasound imaging.
The primary intent of this textbook is to serve as a basis
for instruction in ultrasound physics for diagnostic ultra-
sound technology students and radiology residents. How-
ever, the material presented will also benefit physicians and
technologists in many medical specialties including obstet-
rics, cardiology, vascular surgery, urology, and surgery
as well as veterinarians who use ultrasound equipment.
The medical physicist and engineer can use the textbook
as an introduction to ultrasound physics and instrumen-
tation.

The material in this book is based on lectures given to
diagnostic ultrasound technology students and radiology res-
idents. The physical principles that have applications to the
clinical environment have been stressed. The operator’s
understanding of the basic physical principles and the
factors affecting the presentation of the data influence the
quality of the diagnostic information. It is, therefore, es-
sential that all individuals who perform and/or interpret
ultrasound scans understand the underlying physical prin-
ciples.

The field of medical diagnostic ultrasound has expanded
rapidly over the past decade. Although the basic physical
principles have remained unchanged, significant advances
in instrumentation have resulted in increased clinical use of
this modality. Motion imaging techniques, particularly real-
time and Doppler, have virtually eliminated static B-mode
scanners. Duplex scanners that incorporate real-time im-
aging with nearly simultaneous Doppler capabilities are now
commonplace. Computer processing techniques in color
Doppler imaging have enabled two-dimensional blood flow
information to be superimposed on the real-time image.
The text has been revised and expanded to reflect these and
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other advances in medical diagnostic ultrasound instrumen-
tation.

This edition has been divided into 11 chapters. Chapter
1 presents the basic physical principles of ultrasound in
detail. This is an important chapter because these physical
principles form the basis for understanding all ultrasonic
scanning modes and are dramatically different from those
that apply to diagnostic x-ray imaging. Basic instrumenta-
tion described in Chapter 2 includes transducer and scanner
design based on the echo-ranging principle. Static imaging
modes (A, B, gated and transmission) are discussed in Chap-
ter 3. These instruments have been almost totally replaced
with motion-imaging scanners (real-time, Doppler, and M-
mode), which are described in Chapters 4, 5, and 6. Two-
dimensional echocardiology is also presented in Chapter 6.
Computers have played an important role in the development
of instrumentation and thus digital processing techniques
are discussed in Chapter 7. The usual end product of ultra-
sonic scanning is an image recorded on film or other media.
An overview of image recording devices is presented in
Chapter 8. As with other imaging techniques, ultrasound
deposits energy into the body and thus has the potential for
causing biological effects. Chapter 9 reviews the literature
concerning the biological effects of ultrasound and the clin-
ical safety concerns associated with medical diagnostic ul-
trasound. The quality of the recorded image must be main-
tained at a high level via an appropriate quality control
program as set forth in Chapter 10. The last chapter sum-
marizes image artifacts that can seriously jeopardize the
diagnostic interpretation.

Problem-solving is an integral part of the learning process
in physics and necessary for passing registry and certifi-
cation examinations. Sample problems are incorporated
throughout the text that illustrate important quantitative re-
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lationships. Analogies are used frequently to aid in expla-
nation of physical principles. Review questions at the end
of each chapter further emphasize important concepts.

An extensive glossary of ultrasonic terms is included.
The appendix contains a comprehensive mathematics review
and a short discussion of Fourier analysis, which is a com-
puter processing technique in Doppler scanning. The com-

prehensive review test will thoroughly test the working
knowledge of the reader.

David L. Hykes, M.s.
Wayne R. Hedrick, ph.D.
Dale E. Starchman, ph.D.
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Chapter 1

BASIC ULTRASOUND PHYSICS

INTRODUCTION

Sound is mechanical energy that is transmitted through
a medium such as air. The term mechanical is defined as a
physical change induced by a force. Periodic changes in the
pressure of air are created by forces acting on molecules of
air, causing them to oscillate back and forth about their
mean or average positions. A pressure wave is transmitted
from one location to another when vibrating molecules in-
teract with neighboring molecules. The frequency of a wave
is the number of vibrations at a point each second. This is
discussed in the section Properties of Waves later in this
chapter. Sound waves are those pressure waves that the
human ear can detect. These waves oscillate at frequencies
of 20 to 20,000 cycles/second (c/s); ¢/s is a unit also
referred to as a hertz (Hz).

Sound waves are mechanical in nature but are not re-
stricted to transmission through air. However, they require
an elastic, deformable medium for propagation, including
gases, liquids, and solids. A solid is deformable because
increased pressure applied to a solid causes a change in its
shape. Elasticity is demonstrated by a return to the original
shape when the pressure is lowered to the initial value.
Sound waves are not electromagnetic radiation, as are light
and x-rays. Electromagnetic radiation consists of alternating
electrical and magnetic fields that are at right angles to one
another and that propagate through a vacuum at the speed
of light. Sound transmission cannot occur in a vacuum be-
cause no molecules are available to transfer the vibrations.

Ultrasound is defined as high-frequency mechanical
waves that humans cannot hear; that is, they are mechanical
waves having frequencies of greater than 20,000 Hz, or 20
kHz (k = 10%). Infrasound refers to mechanical waves with
frequencies of less than 20 Hz, which humans cannot hear.
Ultrasound, infrasound, and sound have the same proper-
ties, and thus these terms are often used interchangeably in
the description of physical interactions.

A pendulum having a small angle of displacement moves
back and forth, displaying simple harmonic motion. The
movement of a pendulum can be represented as a wave
(Fig. 1-1). The location as a function of time can therefore
be described using the wave equation

1-1
A = A, sin(2wft)
where A = amplitude at time t
A, = peak amplitude

()
f = frequency

The peak amplitude is the maximum distance from the rest
position.

Sound waves are pressure or mechanical waves that result
in the movement of the particles of a medium across or
through their mean positions (Fig. 1-2). This movement is
described mathematically by the wave equation (Equation
1-1) and can be illustrated by looking at the movement of
a radio speaker. The radiofrequency wave received by the
antenna is converted to an electronic signal, which drives
the mechanical movement of the speaker. The speaker me-
chanically vibrates or oscillates back and forth at the fre-
quency of the sound being produced (Fig. 1-3). The motion
of a speaker can be visualized as a piston. When the speaker
front moves forward, the air molecules immediately in front
are pushed together, producing a region of increased air
density, characterized by a small zone of increased pressure.
The term compression describes the formation of the high-
pressure region (Fig. 1-4).

If the speaker front is pulled back, a zone of decreased
molecular density results. The term rarefaction describes
the creation of a low-pressure region (Fig. 1-4). The regions
of compression and rarefaction are passed through the me-
dium by molecular interactions. The originally affected mol-
ecules collide with adjacent molecules to propagate the ac-
tion of the speaker.
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A A

Time

Distance

Fig. 1-1. Representation of pendulum motion. A. Oscillatory
motion of a pendulum. B, Plot of pendulum displacement with
time. The maximum displacement from the position at rest is
designated A,.

The molecules vibrate back and forth through their mean
positions (a distance of only several microns). A micron is
equal to 107" meters. Molecules do not travel from one end
of the medium to the other; that is, there is no flow of parti-
cles. Rather, the effect is transmitted over long distances
because of the neighbor-to-neighbor interactions. This mo-
lecular motion is necessary for sound transmission, which
explains why sound cannot be transmitted through a vacuum.

Ultrasound is defined as high-frequency (greater than 20
kHz) mechanical waves. The wave energy mechanically
moves particles of a medium so that they vibrate in a rel-
atively uniform fashion, similar to the rhythmic oscillations
of the speaker.

TYPES OF WAVES

Waves are divided into two basic types: longitudinal and
transverse. Longitudinal waves are those in which particle
motion is along the direction of the wave energy propaga-
tion. That is, the molecules vibrate back and forth in the

Time

)
;
D

Distance

Fig. 1-2. Concept of molecular motion. A, Simple harmonic mo-
tion of air molecules produced by piston source. B, Plot of mo-
lecular displacement with time.

Fig. 1-3. Drawing of molecular motion induced by a speaker in
which rarefactions (open areas) and compressions (shaded areas)
are shown.
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Fig. 1-4. Influence of a speaker motion on surrounding air mol-
ecules. A, Undisturbed medium with no speaker motion.
B. Speaker moving outward, compressing the medium. C, Speaker
returns to original position as region of compression advances.
D, Speaker moves inward, creating rarefaction in the medium.
E. Speaker returns to original position as regions of compression
and rarefaction advance in the medium.
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Z N
A < ® ?

Particle motion

WV

Direction of travel

Fig. 1-5. Longitudinal wave. A, Molecular (particle) motion.
B. Direction of travel of the wave is in the same direction as
particle motion.

same direction in which the wave is traveling (Fig. 1-5).
Sound waves are longitudinal.

Transverse waves are those in which the motion of the
particles is perpendicular to the direction of propagation of
the wave energy. The wave motion resulting from a stone
thrown in the water is an example of a transverse wave.
The water molecules vibrate up and down, similar to a cork
floating on the water, as the wave moves away from the
point of origin across the surface of the water. An example
of a transverse wave is shown in Figure 1-6.

Bone is the only biological tissue that can cause the
production of transverse waves, which are sometimes re-
ferred to as shear waves or stress waves.

PROPERTIES OF WAVES

Waves have certain physical characteristics that are used
to describe them. Table I-1 lists common descriptors, and
the corresponding symbols are employed throughout the
text. Each descriptor is introduced and discussed in this
chapter.

When particle displacement is plotted versus distance,
the wavelength of a wave. A, is the distance from crest to
crest or from trough to trough (Fig. 1-7). A more formal
definition of wavelength is the length of one complete wave
cycle (Fig. 1-7). A cycle is a sequence of changes in the
amplitude that recur at regular intervals. Amplitude in this
context describes the displacement from the mean posi-
tion. The complete course of amplitude variations beginning
at one crest is repeated at the next crest. Wavelength is
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A 1

Looking down
on surface

Particle motion
in and out of
N paper plane

Particle
motion

Looking
across
surface

=
Direction of travel
Fig. 1-6. Transverse wave. Direction of travel is radially outward

from the sound source A, which produces particle motion per-
pendicular to the direction of travel B,

Table 1-1. List of physical descriptors and symbols

Descriptor Symbol

Absorption coefficient
Acoustic impedance

Acoustic power

Acoustic pressure

Attenuation coefficient
Compressibility

Density

Frequency

Instantaneous intensity
Intensity attenuation coefficient
Particle displacement

Particle velocity

Period

Reflection coefficient e
Transmission coefficient oy
Velocity of sound c
Wavelength A

A VE ~=oTET TNR

expressed in units of meter (m), centimeter (cm), or mil-
limeter (mm).

Amplitude refers to a change in magnitude of a physical
entity and can be applied to either the pressure in the me-
dium, the density in the medium, the particle displacement,
or the particle velocity, when describing the properties of
waves. The term amplitude has other applications, such as
to characterize the size of the voltage pulse delivered to or

/\
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Distance

Fig. 1-7. Amplitude of particle displacement plotted as a function
of distance of wave travel. The wavelength is defined as the dis-
tance from crest to crest or from trough to trough. The wavelength
is also defined as one complete wave cycle (dotted line).

induced in the crystal of the transducer (discussed later).
Unless indicated otherwise, the term amplitude is used to
describe particle displacement as a property of waves. When
the amplitude is plotted as a function of time, the period of
the wave, 7, is defined as the time necessary for one com-
plete cycle or the time from crest to crest or from trough
to trough (Fig. 1-8). The unit of the period is the second
(s).

The frequency of a wave, f, is the number of cycles
passing a given point in one unit of time (usually Is) and
corresponds to the inverse of the period (1/7). The unit of
frequency is the hertz, which is equal to 1 cycle per second
(c/s).

The speed at which a wave propagates through the me-
dium is called the acoustic velocity, ¢. The velocity of sound
is determined by the rate at which the wave energy is trans-
mitted through the medium, which depends on the density
and compressibility of the medium. Note that the acoustic
velocity is not the same as the particle velocity (), which
refers to the speed at which the particles vibrate back and
forth across their mean positions. It should be emphasized
that a medium must be present in order for sound to prop-
agate. This medium must also be elastic; that is, the medium
must have the ability to deform temporarily and then reform
to its original shape.

The velocity of sound in the medium is inversely pro-
portional to the square root of the density of the medium,
V/p; that is, the denser the medium, the slower the velocity
of sound:
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Fig. 1-8. Amplitude plotted versus time of wave travel, demon-
strating the period of the wave.

cal/Vp

where ¢ = velocity
p = density of the medium

The density is the mass of the medium per unit volume. As
the density of the medium is increased, more mass is con-
tained within a given volume. For particles with increasingly
larger mass, more force is required to produce molecular
motion; once molecules are moving, more force is required
to stop the molecules. This is particularly true for the rhyth-
mic starting and stopping required to produce sound trans-
mission. Thus on the basis of density alone, one would
expect sound (ultrasound) to have a greater velocity in air
(low density) than in bone (high density).

The velocity is also inversely proportional to the square
root of the compressibility of the medium, \/pB:

ca l/VB

Compressibility indicates the fractional decrease in volume
when pressure is applied to the material. The easier a me-
dium is to compress. the higher the compressibility. Dense
materials, such as bone and other solids, are very difficult
to reduce in volume. This low compressibility predicts a
high velocity of sound in bone. In contrast. because the gas
molecules in air are far apart and are easily brought closer
together (i.e., compressibility is high), one would expect
the velocity of sound in air to be low.

The reciprocal of the compressibility is given a special
name, the bulk modulus. Consequently, the velocity is di-
rectly proportional to the bulk modulus. As the bulk mod-
ulus increases—and the compressibility decreases—the
velocity of sound in the medium becomes faster. Some
authorities refer to this property as the stiffness of the
medium.

Combining compressibility and density into one equa-
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tion, the acoustic velocity for a particular medium is de-
termined by:

1-2
1

© = VBp

If the density could be increased without affecting the com-
pressibility, then Equation 1-2 predicts that the speed of
sound would decrease. Compressibility and density of a
particular substance are interdependent; a change in density
is coupled with a larger and opposing change in the com-
pressibility. Because compressibility varies more rapidly,
this parameter becomes the dominant factor in Equation 1-
2. The overall effect is commonly summarized by the state-
ment that, as the density increases, the speed also increases.
As shown in Table 1-2, the velocity of sound in air is 330
m per second (m/s), whereas the velocity of sound in bone
is 4,080 m/s. Compressibility is the key factor in deter-
mining the relative acoustic velocity, because bone is less
compressible than air.

Another comparison of density and compressibility af-
fects can be made by looking at two different liquids. Water
has a density of 1 g per cubic centimeter (1 g/cm?), and
mercury has a density of 13.6 g/cm’. On the basis of density
alone, water would have a velocity of sound \V/13.6 times
faster than mercury. The compressibility of water is 13.4
times higher than mercury (water is more easily com-
pressed), which tends to cancel the density effect. The ve-
locities for water and mercury are similar (Table 1-2). In
fact, all liquids tend to transmit ultrasound at the same
velocity. In the transference of sound, soft tissue behaves
in a manner similar to liquids: the acoustic velocities for
various tissue types do not vary by more than a few percent.

In general, because the compressibility is low, more
dense media (most solids) have greater velocities than do
less dense media (liquids or gases). This is one of the reasons
(the second reason will soon become evident) that cowboys
and Indians used to put their heads on the ground or the
railroad tracks to listen for buffalo or trains in the old John
Wayne movies. Sound travels faster in media denser than
air because of reduced compressibility.

The average velocity of ultrasound in tissue is 1540
m/s. A slight dependence on the temperature of the medium
and on the frequency is exhibited. The velocity of ultrasound
waves in water at 20°C is 1480 m/s. If the temperature of
the water is increased to 37°C, the velocity becomes 1520
m/s. For a few degrees shift in temperature, the change in
velocity in water is small. Room temperature fluctuations
are not a problem with respect to clinical applications be-
cause the body is maintained at a nearly constant temper-
ature. However, sound propagation in phantoms is very
dependent on temperature. For example, a mixture of 8%
ethanol with water at room temperature mimics the velocity
in tissue at 37°C. A temperature change of one degree in



