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FOREWORD

About four years ago we were invited by the editors of World Scientific Publishing Co.
Pte. Ltd. to edit a review volume on selected topics of randomness in magnetism. This
subject was later narrowed down to the magnetism of amorphous metallic alloys. Of
course the first question that came to our minds is “Why bother in editing a volume on a
subject that has already excellent and comprehensive review books and articles like those
of Moorjani and Coey' and J. Chappert.??” The immediate answer was that perhaps it
was worthwhile to make an update to the literature in this field, in the form of a book that
would gather a selection of topics written by the people that had made the most recent
progress. This would offer current reviews from the point of view of the specialists who
would concentrate on their most recent progress while not neglecting to refer the reader
to the already abundant existing literature. With this in mind we invited a selected group
of specialists to review their progress in this subject, some of them accepted this
challenge and this book is the result of their hard work. We thank all of them for their
dedication and for their commitment. Because of the way that this book came about, this
volume is by no means a comprehensive review of all the progress in the subject. Rather
it is a collection of selected topics in the recent progress on the study of the magnetism of
amorphous metals and alloys. Finally, we recognize the title of this book is very
ambitious because while a great deal has been learned about the magnetism of amorphous
metallic alloys, the study of the magnetism of the pure amorphous metals is still a subject
of intense activity. We hope that the content of this book will help to motivate research in
this direction. We trust that the reader will find in this volume a worthwhile update of
some of the progress in the field of amorphous magnetism.

J. A. Fernandez-Baca
W. Y. Ching

'K. Moorjani and J. M. D. Coey, Magnetic Glasses, (Elsevier, 1984).
7. Chappert, “Magnetism of Amorphous Metallic Alloys”, in Magnetism of Metals and Alloys, ed. M.
Cyrot (North Holland, 1982)
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CHAPTER ONE

THEORY OF MAGNETISM IN AMORPHOUS TRANSITION
METALS AND ALLOYS

Yoshiro KAKEHASHI

Department, of Physics, Hokkaido Institute of Technology
Maeda, Teine-ku, Sapporo 006, Japan

Hiroshi TANAKA

IBM Research, Tokyo Research Laboratory,
IBM Japan Ltd., 1623-14, Shimotsuruma, Yamato, Kanagawa 242, Japan

1. Introduction

In the past two decades, a large number of amorphous transition metal alloys show-
ing fascinating magnetic properties have been found with the development of rapid
quenching techniques {1-10]. Their physical properties, such as amorphous struc-
ture, magnetic properties, electronic states, transport properties, and magneto-optical
properties, have been extensively investigated by means of microscopic experimental
techniques. A variety of magnetism caused by structural disorder has opened a new
field of “amorphous metallic magnetism”, in which structural disorder and metallic
magnetism are closely related each other via electronic structure. This chapter re-
views theoretical aspects of recent developments in amorphous metallic magnetism of
transition metals (TM) and alloys.

Needless to say, the most essential character of amorphous systems is structural
disorder. In the past, experimental data for amorphous magnetic alloys have of-
ten prevented us from understanding the effects of structural disorder, because of the
nonexistence of amorphous pure transition metals and the limited range of concentra-
tion in amorphous alloys. Amorphous transition metal alloys containing considerable
amount of metalloids (typically 20 at.% B or P), were first systematically investigated
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by Mizoguchi et al. [11-12], Hasegawa et al. [13], and O'Handley et al. [14-15] in the
1970’s. The data showed that the magnetization and Curie temperature (T¢) were
uniformly lower than those of crystalline alloys when they were plotted as a func-
tion of average d-electron numbers. Amorphous FegoB1pPyo alloy [15], for example,
shows ferromagnetism with the ground-state magnetization M=2.1 ug and T¢=640
K, while bee Fe has M=2.2 up and Tc=1040 K. Amorphous CogBoPyo alloy {15]
also shows ferromagnetism with M=1.1 up and T¢=770 K, which may be compared
with M=1.7 up and T=1400 K in fcc Co.

The magnetization vs. concentration curves were analyzed by using a concept of
generalized Slater-Pauling curves suitable for the strong ferromagnets [16-19]. This
method is based on the following identity:

M =Zm—+—2nspT . (11)

Here ngpt is the averaged number of sp-electrons with up spin. Z, is the averaged
magnetic valence defined by Z, = 3,¢.(2nat — Zo ). Coy Nt, and Z, are the
concentration, d-electron number with up spin, and the chemical valence for the
constituent atom c, respectively. Since Z, and ngy are linear with respect to the
concentration in transition metal alloys with strong ferromagnetism, we have a linear
relation between M and Z,.

The simple behaviors of M and T¢ in TM-metalloids alloys were often regarded as
inherent properties of amorphous structure rather than as effects of the presence of
metalloids. It was concluded that the structural disorder merely introduced such sim-
ple behaviors into the magnetic properties [4]. However, the above picture changed
with the appearance of amorphous transition metal alloys containing early transition
metals or rare-earth (RE) metals in the 1980’s [10,20-27]. In particular, Hiroyoshi
and Fukamichi [22], Saito et al. [23], Coey et al. [24-25], Wakabayashi et al. [26], and
Fukamichi et al. [21] found that the ferromagnetism in Fe-rich amorphous alloys col-
lapses completely beyond 90 at.% Fe, and that a new spin-glass (SG) phase appears
in which the transition temperatures are 120 K irrespective of the second elements,
contradicting the early data on alloys containing metalloids. Furthermore, Fukamichi,
Goto, and Mizutani [27] found that the Curie temperatures in Co-rich Co-Y amor-
phous alloys are enhanced as compared with those in their crystalline counterparts.
It was suggested that the Curie temperature extrapolated to amorphous pure Co
should reach 1850 K, which is 450 K higher than for fecc Co. These drastic changes
of magnetism in the vicinity of amorphous pure metals have revealed the important
role of structural disorder in amorphous metallic magnetism. It is our main purpose
to describe such a new feature of amorphous metallic magnetism from the theoretical
point of view.

There are two directions in the development of solid state physics. One is to include
more and more electron correlations in order to achieve microscopic understanding
of magnetism, metal-insulator transition, and high-T¢ super conductors [28-29]. In
particular, theoretical description of the magnetism in transition metals and alloys



has been the main part of correlation problems, since the transition metal alloys show
both itinerant and localized behaviors in their magnetic properties [30]. The other
direction is to take account of more and more disorder [31). The theory of transi-
tion metals and alloys in this direction has been developed in the order of magnetic
impurities, substitutional alloys, and amorphous alloys [32-33]. A quantitative the-
ory of amorphous metallic magnetism is, therefore, a goal that these two lines of
investigation should reach at the end of the development.

This chapter is organized as follows. We discuss in the following section the theoret-
ical problems and historical developments in amorphous metallic magnetism. There
are discussions on the amorphous structure, electronic structure, and magnetism in
Sec. 2.1. The most important advances in the recent theories of amorphous metal-
lic magnetism have been the first-principles band calculation of the ground-state
amorphous electronic structure and the development of a finite-temperature theory.
The former was established by Fujiwara [34-35] through a combination of the linear-
muffin-tin-orbital (LMTO) method [36-37] with the recursion method [38-39) in the
framework of the band theory, which will be reviewed in Sec. 2.2. The latter was
recently proposed by Kakehashi [40-42] on the basis of the functional integral method
(43-45] and the distribution-function method [46-47). The finite-temperature theory
is reviewed in Sec. 2.3. Section 3 is devoted to the magnetism in amorphous transi-
tion metals, in particular, amorphous Fe, Co, and Ni. Numerical examples for these
systems will demonstrate the basic effects of structural disorder. The magnetic prop-
erties of transition metal alloys are governed by both structural and configurational
disorders. In Sec. 4, we discuss the magnetic properties of TM-TM alloys (Sec. 4.1),
TM-RE alloys (Sec. 4.2), and TM-metalloid alloys (Sec. 4.3) on the basis of their
electronic structures, which have been obtained in the last decade.

2. Theoretical Approach to Amorphous Metallic Magnetism

2.1. Basic Problems and Developments

Amorphous transition metals and alloys are characterized by structural disorder
and itinerant magnetism. In the latter, electrons move from site to site with the elec-
tron hopping integrals which form electronic band structure. The magnetism is known
to be caused by competition between the electron hopping and the electron-electron
Coulomb interactions. The magnetic properties are sensitive to the band structure
rather than the Coulomb interactions in metals, because the screened Coulomb in-
teractions act mainly between the on-site electrons, and thus depend very little on
the structure of solids. It is therefore essential to take into account the effect of the
structural disorder on the electronic band structure. This implies that it is difficult
to understand the magnetic properties of amorphous transition metals and alloys
without taking the following regular steps:

(1) Construction of amorphous structure



(2) Calculation of electronic structure

(3) Constructing a theory of amorphous magnetism on the basis of the electronic
structure

In what follows, we briefly discuss the theoretical problems in these three steps, as
well as historical developments.

2.1.1. Amorphous structure

In crystalline systems, the crystal structure and lattice constants can be deter-
mined by analyzing the Bragg peaks in X-ray or neutron diffraction, and thus the
electronic structure can be calculated on the basis of the Bloch theory [37,48]. This
procedure is no longer available for amorphous metals and alloys, because of the lack
of translational symmetry. X-ray experimental techniques [49,50] give us only the
pair distribution functions (PDF) g,,(R), which are defined as follows:

gor(R) = P B (1.2)

Py

where p.,(R) is the density of a y atom at a distance R from an @ atom, and p,
is the density of the v atom. The distribution function g,,{R) converges to 1 as R
approaches infinity. Reduced PDF G,,(R) are also used, and are defined as follows.

Gay(R) = 47"R2{ga7(R) -1} . (1.3)

Although we can obtain further information on the amorphous structure from
EXAFS (extended X-ray absorption fine structure) and neutron measurements (9],
it is not possible to determine experimentally all the atomic positions in the amor-
phous structure, though these are indispensable for electronic-structure calculations
of amorphous systems and microscopic understanding of magnetic properties. This
difficulty imposes us on the above theoretical problem (1), namely, how to construct
a reasonable model for an amorphous structure.

The simplest model for amorphous metals and alloys is the dense random packing
of hard spheres (DRPHS) model. The model was first proposed by Bernal [51-52].
He constructed the model by squeezing and kneading rubber bladders filled with
ball bearings of the same size. He found that the DRPHS model consists of only
the five types of polyhedra (so-called ‘Bernal holes’) shown in Fig. 1.1. Finney [53]
constructed a much larger cluster model by using the same method as Bernal, and
obtained a PDF. Bennett [54] constructed a DRPHS model by using a computer. His
algorithm for generating the cluster is as follows: (1) make an equilateral triangle
consisting of three hard spheres touching each other, (2) list up all the pockets in
which new sphere could be added in hard contact with three spheres which already
exist in the cluster, (3) add the new sphere to the nearest pockets from the origin of
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Fig. 1.1: Five types of polyhedra in the DRPHS model: (a) Archimedian antiprism,
(b) trigonal prism, (c) tetragonal dodecahedron, (d) tetrahedron, and (e) octahe-
dron

the cluster, and (4) return to the step (3). The PDF calculated from this computer-
simulated cluster model was quite similar to that of the ball bearing model. It was
however somewhat different from the experimental one. In particular, the splitting of
a second peak into two peaks and their relative amplitudes could not be reproduced.

Ichikawa [55] suggested that this splitting was related to the tetrahedral local
atomic structure, and improved Bennett’s algorithm. He introduced a parameter A
which measured the perfection of the tetrahedral structure. It is given in the form

T
A—_—_L—-Ri'i‘Rj . (1.4)
where each ¢ or j denotes one of the three spheres in the cluster forming a new pocket
in step (2) of Bennett’s algorithm. r;; is the distance between the spheres i and j. R;
is the radius of the sphere i. Obviously; A changes from 1 to 2 for a single-size sphere
system in Bennett’s algorithm. The deviation from a perfect tetrahedral structure is
evaluated as the deviation from the condition A = 1.

Ichikawa constructed a DRPHS model with several A values, and found that the
PDF was well reproduced when A was 1.2. Although the PDF was well reproduced,
the packing fraction of the model was smaller than in the experimental data because
of porosity of the model structure.

These disadvantages were overcome by a process for structural relaxation of a
DRPHS model through the atomic force produced by appropriate pair potentials
[56,57]. This method, the so-called relaxed DRPHS model, was proposed by Cargill [49).
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Fig. 1.2: Pair-distribution function of computer-generated amorphous iron [58]

Figure 1.2 shows an example of a pair-distribution function for amorphous Fe
calculated by Yamamoto and Doyama (58], using the relaxed DRPHS model. The
first peak at r; = 2.54 A is sharp, and is clearly separated from the second and third
ones. This means that there exists a well-defined nearest-neighbor (NN) shell even
in amorphous systems. The ratio of the fluctuation of the NN interatomic distance
to the average NN distance is estimated from the width of the first peak to be 0.067,
which is in agreement with recent experimental data for Fe-rich amorphous alloys [59].
The second peak, at 7, = 1.67ry, is considered to originate in the local structures of
the rhombi, each of which consists of two regular triangles with a side r;, and the
hexahedra, each of which consists of two tetrahedra with a side r;. The third peak
at r3 = 2r; is associated with three contact atoms on a line.

The thermodynamical molecular-dynamics (MD) method [60] is a more sophisti-
cated way of constructing an amorphous structure. In this method, the constituent
atoms are distributed in a box with a periodic boundary condition, and the Newton
equations of atomic motion are solved by assuming appropriate short-range inter-
atomic pair potentials. Rapid quenching is simulated by reducing the kinetic energy,
which is proportional to the temperature, at constant time intervals, under the con-
dition that either the pressure or volume is constant. The method aims to simulate
the formation of an amorphous structure according to the physical principle by using
computers.

More recently, an ab-initio MD method was developed by Car and Parrinello [61].
In this method, interatomic forces are calculated directly from electronic structure
and atomic structure without any empirical parameters, so that both the electronic
and atomic structure are treated on an equal footing. Car and Parrinello greatly



accelerated the ab-initio MD calculation by solving the equations of motions for both
atoms and electrons at the same time. The method is most efficient when combined
with the pseudo-potential technique and plain wave orbitals, and has been applied to
amorphous semiconductors [62-63], surfaces of semiconductors, and interdiffusion in
semiconductors [64].

Although MD calculations are very effective for constructing an atomic structure
model of amorphous materials, there are some limitations at the present stage. The
MD calculations are limited to rather small systems (100 ~ 1000 atoms in a box) be-
cause of the insufficient efficiency of computers. Moreover, the minimum cooling rate
in the MD is about 10** (K/s), which is too large as compared with the experimental
rates (~ 10° (K/s)). We do not enter into the details of these problems because they
fall outside the scope of our discussion.

2.1.2. Electronic structure calculations

Amorphous systems lose translational symmetry and the Bravais lattice. This
makes it impossible to calculate their electronic structures by making use of the Bloch
theorem. Much theoretical effort, therefore, has been concentrated on this problem
in the past twenty years.

The best single-site approximation was first established by Roth [65-66]. She in-
troduced a k-dependent effective selfenergy caused by the structural disorder. The
selfconsistent equations for the selfenergy were obtained from a single-site decoupling
to the coupled equations for the averaged T-matrices. This is called the effective
medium approximation, and is regarded as a natural extension of coherent potential
approximation (CPA) in disordered substitutional alloys [67-68].

The single-site approximation does not describe the details of the local environ-
ment effects (LEE) on the densities of states and the local magnetic moments, which
are in particular important for transition metal alloys. Fujiwara [34] developed a gen-
eral method going beyond single-site approximation. He combined the tight-binding
linear muffin-tin orbital method (LMTO) [36] with the recursion method [38-39] in
electronic-structure calculations. The former gives an effective tight-binding Hamil-
tonian which greatly simplifies the band-structure calculations within the framework
of the local-spin density functional theory [69-71]. The latter is powerful for the elec-
tronic structure calculations of disordered systems when their Hamiltonians can be
described in a tight-binding form. The method provide us with first-principles elec-
tronic structure calculations for a given amorphous structure, and is regarded as the
best method for calculating the electronic structure of amorphous transition metals
and alloys. We will review the theory briefly in Sec. 2.2.

An alternative approach which also aims at the first-principles calculations of amor-
phous metals and allays is to simulate the amorphous structure by means of a crystal
with a large unit cell. This “supercell” approach [72-76] was made effective by the
development of the linear method [36-37] and super computers. It is now possible



to perform first-principles calculations for an amorphous “compound” with 50 to 100
atoms in a unit cell.

2.1.9. Calculating magnetic properties

When we calculate magnetic properties on the basis of electronic structure, we have
to take into account the spin degrees of freedom. This causes two major difficulties
in the theoretical investigations of amorphous transition metals and alloys. First,
the local magnetic moments (LM) change their directions as well as their amplitudes
according to their local environments, as a result of the structural disorder. The
question is then how one determines the LM configuration selfconsistently. This is
not an easy problem even at the ground state when the ferro- and antiferro-magnetic
interactions compete with each other in the disordered system, because many local
minima in enpergy are expected, and finding the lowest energy is beyond the trial-
and-error calculations. The problem is essential for the description of spin glasses, in
which LM’s are spatially disordered with no net magnetization, but are ordered or
frozen thermodynamically [77-78).

As far as the ground state is concerned, one possibility may be to use the simulated
annealing method [79]. In this method, the total energy E is minimized relative to the
spin densities {(m;)} by generating a succession of {{m;)} ’s with a Boltzmann-type
probability for a fictitious temperature T in a Monte-Carlo method, or by solving
the equations of motion for classical particles with a “potential energy” E in the MD
method. When T — 0, the state with the lowest energy may be reached. However,
these methods have not been applied yet.

The second problem is that transition metals show local-moment as well as itinerant-
electron behaviors in their magnetism [80]. The band theory based on the Stoner
model explains the non-integer ground-state magnetization, the existence of the Fermi
surface, and the T-linear specific heat at low temperatures. But it does not lead to the
local-moment behaviors such as a reasonable T, the Curie-Weiss susceptibility, and
a large specific heat at T¢ in Fe, Co, and Ni. Although the difficulty has been a long-
standing problem in the theory of itinerant magnetism, it has been clarified in the
past decade that it can be solved by taking into account the thermal spin fluctuations
missing in the Stoner model [29-30]. Such a spin fluctuation theory has recently been
applied to amorphous metallic systems by Kakehashi [40-42]. He took into account
thermal spin fluctuations by making use of the functional integral method developed
by Cyrot [43], Hubbard [44], and Hasegawa [45), and determined the LM distribution
due to the structural disorder using the distribution-function method developed by
Matsubara and Katsura [46-47]. This is the only theory which is available at finite
temperatures at present. It will be reviewed in detail in Sec. 2.3.



