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Chapter 1
ECTORS IN R”*i .

IN THIS CHAPTER:

v Vectors in R"

v Vector Addition and Scalar
Muiltiplication

v' Dot Product

Vectors in R”

Although we will restrict ourselves in this chap-
ter to vectors whose elements come from the
field of real numbers, denoted by R, many of our
operations also apply to vectors whose entries
come from some arbitrary field K. In the context
of vectors, the elements of our number fields are
called scalars.

Lists of Numbers
Suppose the weights (in pounds) of eight students are listed as follows:
156 125 145 134 178 145 162 193

One can denote all the values in the list using only one symbol, say w, but
with different subscripts; that is
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W W, W3 Wy Ws We W, Wg

Observe that each subscript denotes the position of the value in the list.
For example,

w, = 156, the first number, w, = 125, the second number,...

Such a list of values, w = (wy, Woy Wapeony We) is called a linear array or
vector.

The set of all n-tuples of real numbers, denoted by R”, is called n-
space. A particular n-tuple in R”, say u =(a, a,, ..., a,) is called a point
or vector. The numbers a, are called the coordinates, components, entries,
or elements of u. Moreover, when discussing the space R”, we use the
term scalar for the elements of R.

Two vectors, u and v, are equal, written u = v, if they have the same
number of components and if the corresponding components are equal.
Although the vectors (1, 2, 3) and (2, 3, 1) contain the same three num-
bers, these vectors are not equal since corresponding entries are not equal.

The vector (0, 0, ..., 0) whose entries are all O is called the zero vec-
tor, and is usually denoted by 0.

Example 1.1.
(a) The following are vectors:
(2,-5) (7,9) (0,0,0) (3.4,5)

The first two belong to R? whereas the last two belong to R?. The
third is the zero vector in R>.
(b) Find x,y,zsuchthat(x—y, x+y z—1)=(4,2,3).

By definition of equality of vectors, corresponding entries must be
equal. Thus,

x—-y=4 x+y=2 z-1=3

Solving this system of equations yields x =3, y=-1, z=4.
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Column Vectors
Sometimes a vector in n-space R” is written vertically, rather than hori-
zontally. Such a vector is called a column vector, and, in this context, the

above horizontally written vectors are called row vectors. For example,
the following are column vectors with 2, 2, 3, and 3 components, re-

spectively:
1 3
2] |4

We also note that any operation defined for row vectors is defined analo-
gously for column vectors.

[

—6 .|

Vector Addition and Scalar Multiplication
Consider two vectors « and v in R”, say
u=(a

18y -na)andv=(b,b,, ..., b)

Their sum, written u + v, is the vector obtained by adding corresponding
components from u and v. That is,

utv=(a, +b,a,+b,, ...,a,+b)
The scalar product or, simply, product, of the vector u by a real number
k, written ku, is the vector obtained by multiplying each component of u
by k. That is,
ku=ka,, a,, ..., a,) = (ka,, ka, ..., ka,)
Observe that u + v and ku are also vectors in R". The sum of vectors with
different numbers of components is not defined.
Negatives and subtraction are defined in R” as follows:

—u=(-1u and wu-v=u+(-v)

The vector —u is called the negative of u, and u — v is called the difference
of u and v.
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Now suppose we are given vectors u,, u,, ..., u, in R" and scalars

ky, ky, ..., k,, in R, We can multiply the vectors by the corresponding
scalars and then add the resultant scalar products to form the vector

y= klu1 + k2u2 Fikgly + e +kmum

Such a vector v is called a linear combination of the vectors u, u,, ...,
U .
Example 1.2.

(a) Letu=(2,4,-5)and v=(1,-6,9). Then

u+v=02+1,4+(-5),-5+9)=(@3.-1,4)
Tu=(7(2), 7(4), 7(=5)) = (14, 28, =35)
—v=(=1)(1,-6,9)=(-1,6,-9)
3u—5v=(6,12,—-15) + (-5, 30, —45) = (1, 42, -60)

2 3 41 [-97 [-5
(b) Let u=| 3| v=|—-1| Then2u—-3v=| 6|+ 3|=| 9
-4 4 8| | 6] |2

Basic properties of vectors under the operations of vector addition
and scalar multiplication are described in the following theorem.

Theorem 1.1: For any vectors u, v, w in R” and any scalars k, k" in R,

) (u+v)+w=u++w), (v) k(u+v)=ku+ kv,
(1) u+0=u, i) (k+KkYyu=ku+ Ku,
(1) u+ (—u)=0, (vil) (k K)u = k(k'u),

(ivyu+v=v+u, (viil) lu=u.
Suppose u and v are vectors in R” for which u = kv for some nonzero

scalar k in R. Then u is called a multiple of v. Also, u is said to be the same
or opposite direction as v accordingly as k> 0 or k < 0.

Dot Product

Consider arbitrary vectors # and v in R”; say,
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u=(a,a,,...,a,) and v=(b,,b,,....b))

n

The dot product or inner product or scalar product of u and v is denoted
and defined by u-v=ab, +a,b,+ ... +a,b . Thatis u - v is obtained by
multiplying corresponding components and adding the resulting prod-
ucts. The vectors u and v are said to be orthogonal (or perpendicular) if
their dot product is zero, that is, if u - v=0.

Example 1.3. Letu=(1,-2,3),v=(4,5,-1), w=(2,7,4). Then:
u-v=14)-2(5)+3-1)=4-10-3=-9
and
u-w=12)-2(MH+34)=2-14+12=0
Thus u and w are orthogonal.
Basic properties of the dot product in R” follow:
Theorem 1.2: For any vectors «, v, w in R” and any scalar &k in R:

1) (u+v)-w=u-w+v-w (1)) u-v=v-u
(ii) (ku)-v=k(u-v) (iv) u-u=20andu-u=0ifu=0.

Note that (ii) says that we can “take k out™ from
the first position in an inner product. By (iii) and (ii),
u- (kv)=(kv) - u=k(v-u)=k(u-v)Thatis, we can
also “take k out” from the second position in an in-
ner product.
The space R” with the above operations of vector addition, scalar
multiplication, and dot product is usually called Euclidean n-space.

Norm (Length) of a Vector
The norm or length of a vector u in R”, denoted by ||u||, is defined to be

the nonnegative square root of u - u. In particular, if u = (a,, a,, ..., a,),
then
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[l = vVu-u = \/alz +aj3 ++--+a; . That is, [ is the square root of the
sum of the squares of the components of u. Thus [u] >0, and ||uf = 0 if
and only if u=0.

A vector u is called a unit vector if |ju]| = 1 or, equivalently, if u - u=1.

; x ! . .
For any nonzero vector v in R”, the vector v=—v = is the unique

‘,
vl I
unit vector in the same direction as v. The process of finding ¥ from v is
called normalizing v.

Example 1.4. Suppose u = (1, -2, —4, 5, 3). To find |jul|, we can first
find [ju|2 = u - u by squaring each component of « and adding, as follows:

W =12 +(=2)% +(=4)% +52 + 3 =1+ 4 +16+25+9=55

Then |juf =+/55.

We can normalize u as follows:

ﬁ_i_(l -2 -4 5 3)
*Jlul \V55 /55 V55 /55 /55

This is the unique unit vector in the same direction as u.

Note

The following formula is known as the Schwarz in-
equality or Cauchy-Schwarz inequality. Itis used in
many branches of mathematics.

Theorem 1.3 (Schwarz): For any vectors u, v in R", [u- v| < ul [v] .

The following result is known as the triangle inequality or Min-
kowski'’s inequality.

Theorem 1.4 (Minkowski): For any vectors «, v in R”,

e+ < ]+ IV
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Matrices

This chapter investigates matrices and algebraic op-
erations defined on them. These matrices may be
viewed as rectangular arrays of elements where each
entry depends on two subscripts (as compared with

7
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vectors, where each entry depends on only one subscript). Systems of lin-
ear equations and their solutions (Chapter 3) may be efficiently investi-
gated using the language of matrices. The entries in our matrices will
come from some arbitrary, but fixed, field K. The elements of K are called
numbers or scalars. Nothing essential is lost if the reader assumes that K
is the real field R.

A matrix A over a field K or, simply, a matrix A (when K is implicit)
is a rectangular array of scalars usually presented in the following form:

app dp o ay,

yy Ay Gy,
A=

a a a

ml m2 mn

The rows of such a matrix A are the m horizontal lists of scalars:

@), 8y50 e v @), Ay, sy oen 8y, o0 (@, 000, 5,00, )

A matrix with m rows and n columns is called an m by n matrix, writ-
ten m X n. The pair of numbers m and n is called the size of the matrix.
Two matrices A and B are equal, written A = B, if they have the same size
and if corresponding elements are equal. Thus the equality of two m X n
matrices is equivalent to a system of mn equalities, one for each corre-
sponding pair of elements.

A matrix with only one row is called a row matrix or row vector, and
a matrix with only one column is called a column matrix or column vec-
tor. A matrix whose entries are all zero is called a zero matrix and will
usually be denoted by 0.

Example 2.1.
1 —4

0 3 =2
are (1,4, 5) and (0, 3, —=2), and its columns are

o} 5

0000}

(a) The rectangular array A =[ ] is a 2 X 3 matrix. Its rows

(b) The 2 X 4 zero matrix is the matrix 0=
0 0 0 0
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) x+y 2z+t 3 7
(¢) Find x,y, z, t such that =
x—y Z—it 1 5

By definition of equality of matrices, the four corresponding entries
must be equal. Thus:

x+y=3 x-y=1 2z7+t=7 z—-t=5

Solving the above system of equations yields

Matrix Addition and Scalar Multiplication

LetA=[a,] and B = [bij] be two matrices with the same size, say m X n
matrices. The sum of A and B, written A + B, is the matrix obtained by
adding corresponding elements from A and B. That is,

an+by  aptby ... oa,th,
A+B= 2n 2n
Ay +bml A2 +bn12 cee Uy + bmn

The product of the matrix A by a scalar k, written k + A or simply kA, is
the matrix obtained by multiplying each element of A by k. That is,

kay,  kay ... ka,
kay,, kay, ... ka,,
ka,, ka,, ... ka,,

Observe that A + B and kA are also m X n matrices.

We also define —A = (—1)A and A — B = A + (—B). The matrix —A is
called the negative of the matrix A, and the matrix A — B is called the dif-
ference of A and B. The sum of matrices with different sizes is not de-
fined.
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I -2 3 4 6 8
Example 2.2. et A= and B= ’ . Then
0 45 I -3 -7

I+4 -2+6 348 5 4 11
A+B= -

0+1 4+(=3) 5+(-7) 1 =2

4o 3 3-2) 3] [3 -6 9
TU300) 0 3(4) 35)] |0 12 15
6

2 -4 =12 -—-18 =24 -10 =22 -18
2A-3B= + =
0 &8 10 -3 9 21 -3 17 31
The matrix 24 — 3B is called a linear combination of A and B.

Basic properties of matrices under the operations of matrix addition
and scalar multiplication follow.

Theorem 2.1: Consider any matrices A, B, C (with the same size) and any
scalars k and k’. Then:

(i) A+B)+C=A+ B+ (), (v) k(A+ B)=kA + kB,

(1)) A+0=0+A=A, (vi) (k+Kk)A = kA + KA,
(iii) A+ (-A)=(-A)+A =0, (vil) (kKA = k(K'A),
(iv) A+ B=B+A, (viii) 1 -A=A.

Note first that the 0 in (i1) and (ii1) refers to the zero matrix. Also, by
(i) and (iv), any sum of matrices A| + A, + ... + A requires no parenthe-
ses. and the sum does not depend on the order of the matrices.

Observe the similarity between Theorem 2.1 for matrices and Theo-
rem 1.1 for vectors. In fact, the above operations for matrices may be
viewed as generalizations of the corresponding operations for vectors.

Matrix Multiplication

Before we define matrix multiplication, it will be instructive to first in-
troduce the summation symbol Z (the Greek capital letter sigma).
Suppose fik) is an algebraic expression involving the letter k. Then

n
the expression Zf(k) has the following meaning. First we set k=1 in
k=1
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k). obtaining f(1). Then we set k =2 in f(k). obtaining f(2). and add this
to f(1). obtaining f( 1)+ f{2). Then we set k =3 in [(k), obtaining f(3), and
add this to the previous sum, obtaining f{ 1)+ f(2) + f(3). We continue this
process until we obtain the sum f(1) + f(2) + ... + f(n). Observe that at
each step we increase the value of 4 by | until we reach n. The letter & is
called the index, and 1 and n are called. respectively, the lower and up-
per limits. Other letters frequently used as indices are 7 and j.

We also generalize our definition by allowing the sum to range from
any integer nn, to any integer n,. That is, we define

2 fky=fp+ fin +h+ fing +2)+..4 f(ny)
k=n,

Example 2.3.

5 1
(a) 2,\A =4 4, Fa+ ., + g and Zu,/)/ =aby ta-by +.+ab
=1

ntn
A=l

3 "
by Y 7 =243 +47+5 =54 and D ax' =a,tax+ary +o+a,x"

/= =0

The product of matrices A and B. written AB. is somewhat compli-
cated. For this reason, we first begin with a special case.

The product AB of a row matrix A = [a,] and a column matrix B =[]
with the same number of elements is defined to be the scalar (or | X 1 ma-
trix) obtained by multiplving corresponding entries and adding: that is,

b,
b, %
AB=[uy.dr.na, | T 1=aby +aby + 4 upb, = Z“A[’A
k=1
Lo

We emphasize that AB is a scalar (or a 1 x | matrix). The product AB is
not defined when A and B have different numbers of elements.
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Example 2 4.

3
(a) [7,—4,5] 21=73)+(—4)2)+5(-1)=21-8-5=8
-1
4

-9
(b) [6.-183] |=24+9-16+15=32
5

We are now ready to define matrix multiplication in general. Sup-
pose A= [ajk] and B=[b kj] are matrices such that the number of columns
of A is equal to the number of rows of B; say, A is an m X p matrix and B
is a p X n matrix. Then the product AB is the m X n matrix whose ij-entry
is obtained by multiplying the ith row of A by the jth column of B. That
is,

Ay o alp b“ blj vy bln (&F R
a“ o "aip L x 5% ¢ . = . Cz:i
|Gt - Gy | _bpl s B bpn“ | G e O

P
where ¢; =auby; +apby; +...+a,b, = Zaikbkj.
k=1

The product AB is not defined if A is an m X p matrix and B is a g X
n matrix, where p # g.

Example 2.5.

Find AB where A=| - | and B=|> °
(a) n where =l an s o 6!

Since A is 2 X 2 and B is 2 x 3, the product AB is defined and AB is
a2 x 3 matrix. To obtain the first row of the product matrix AB, mul-
tiply the first row [1, 3] of A by each column of B,

HIN
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respectively. That is,

[2+15 0-6 —4+18}_|:17 -6 14]

To obtain the second row of AB, multiply the second row [2, —1] of
A by each column of B. Thus

17 -6 14 17 -6 14
AB = =
4-5 0+2 -8-6 -1 2 -14
(b) S A b2 d B= 3 & Th
) Suppose A = 3 4 an “lo -2l en
540 6-4 5 2
B= = and
15+0 18-8 15 10
5+18 10+24 23 34
BA = =
0-6 0-8 -6 -8
The above example shows that matrix multiplication is not commu-
tative, i.e., the products AB and BA of matrices need not be equal. How-

ever, matrix multiplication does satisfy the following properties.

Theorem 2.2: Let A, B, C be matrices. Then, whenever the products and
sums are defined:

(i) (AB)C =A(BC) (associative law),

(i) A(B+ C)=AB + AC (left distributive law),
(iii) (B + C)A = BA + CA (right distributive law),
(iv) k(AB) = (kA)B = A(kB), where k is a scalar.

We note that 0A = 0 and BO = 0, where 0 is the zero matrix.

Transpose of a Matrix

The transpose of a matrix A, written A7, is the matrix obtained by writ-
ing the columns of A, in order, as rows. For example,



