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Preface

Quantum integrable models play important roles in a variety of fields such as
quantum field theory, condensed matter physics, and statistical physics. For dec-
ades, a number of theoretical methods have been developed for solving the
eigenvalue problem of integrable models. Among them, the three typical and most
popular methods are the coordinate Bethe Ansatz method proposed by H. Bethe in
1931, the T — Q method proposed by R.J. Baxter in the early 1970s, and the
algebraic Bethe Ansatz method proposed by the Leningrad Group in the late 1970s.
These methods have been demonstrated as powerful in solving most of the known
quantum integrable models. After Baxter’s work on the eight-vertex model, people
realized that a special class of quantum integrable models exists in which the U(1)
symmetry is broken and, in some cases, obvious reference states are absent. Some
well-known examples are the XYZ spin chain (or equivalently the eight-vertex
model), the quantum Toda chain, the anisotropic spin torus, and the quantum spin
chains with nondiagonal boundary fields. Several methods have since been
developed to approach this remarkable problem. Among them, two promising ones
are Baxter’s T — Q method and Sklyanin’s separation of variables (SoV) method,
which provide efficient tools to treat quantum integrable models with functional
analysis.

This book serves as an introduction to the off-diagonal Bethe Ansatz (ODBA)
method, a newly developed analytic theory to approach exact solutions of quantum
integrable models, especially those with nontrivial boundaries. In any sense, ODBA
is not an isolated theory but one based on extensive existing knowledge. Therefore,
this book also covers some main ingredients of 7 — Q relation, algebraic Bethe
Ansatz, thermodynamic Bethe Ansatz, fusion techniques and Sklyanin’s SoV basis,
etc. It is organized in a parallel structure to explain how ODBA works for different
types of integrable models. Chapter 1 is devoted to the basic knowledge of quantum
integrable models, and Chap. 2 to a comprehensive introduction of the algebraic
Bethe Ansatz, the fusion techniques, and the SoV scheme. In addition, the ther-
modynamic Bethe Ansatz method is introduced as a tool for deriving the physical
quantities. Chapter 3 focuses on the application of ODBA in the periodic XXZ
model and the XYZ model, and Chap. 4 on the topological boundary problem using

vii
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the anisotropic spin torus as example. Chapter 5 studies the exact solution
of the spin—% chain Hamiltonian with generic open boundaries, which had been
a long-standing problem for over two decades. Chapter 6 is devoted to the one-
dimensional Hubbard model and the super-symmetric # —J model with generic
integrable boundaries. Chapters 7 and 8 focus on the generalizations of ODBA to
high-spin integrable models. Chapter 9 is devoted to the Izergin-Korepin model
with generic boundaries, a typical integrable model beyond the A-type models.
Calculations of some important physical quantities based on the Bethe Ansatz
equations, especially the nontrivial boundary contributions, are given in Chaps. 2-5
and the method for retrieving the eigenstates based on the inhomogeneous 7' — Q
relations and the SoV basis is introduced with concrete examples in Chaps. 4 and 5.

In general, the authors aim to introduce topics that are under ongoing research
and are developing at a stimulating pace in this fascinating field. These contents are
selected for the book according to the authors’ own understanding of the topics
under discussion. Thus, they devote much attention to methods that work well for
the nontrivial boundaries (Research on nontrivial surface effects, including edge
states of the quantum Hall effect, surface states of topological insulators, open
strings, and stochastic processes in nonequilibrium statistical physics, has become a
trend in modern physics. The authors study this problem from the mathematical
physics side.). The two-dimensional lattice models and most of the well-established
knowledge on the models with periodic and diagonal boundary conditions are not
included, since several excellent books have already covered these topics. This
book was originally planned for around 100 pages but then was expanded to the
present size, thanks to suggestions of numerous colleagues that detailed calculations
should be included as much as possible to make it easy to follow the method.
Although most of the results contained in this book have been rigorously proven,
we still use the word “exactly” in the title as Baxter did for his book, for the reason
that some results in this book are not that rigorously proven. For example, the
thermodynamic limit is constructed based on reasonable physical arguments. For
most models considered in this book, numerical results are provided to support the
analytical ones, which is a conventional way for physicists and scientists in other
fields to support their proposals, though it may not meet mathematical rigorousness.
For physicists, to propose something correct is always more ambitious than to
prove it.

Also, the methodology still needs to be developed and leaves some open
questions, among which are: how to apply it in graded integrable models and in
cyclic integrable models with nontrivial boundaries; how to retrieve the Bethe states
and to derive the scalar products of high-rank quantum integrable models, etc. We
expect that those issues may undergo significant progress in the near future.

The authors would like to share with you their happiness in undertaking the
collaboration, which started in Fall 2012. At that time little was known about
ODBA. Without the ensuing teamwork, it would have been impossible to achieve
the main original results contained in this book!
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Chapter 1
Overview

Quantum integrable models are exactly solvable models defined by the Yang-Baxter
equation (YBE) [1, 2] or the Lax representation [3]. These models play important
roles in a variety of fields such as quantum field theory, condensed matter physics
and statistical physics, because they can provide solid benchmarks for understand-
ing the many-body effects in corresponding universal classes and sometimes even
yield conclusions to debates about important physical concepts. For instance, the
exact solution of the two-dimensional Ising model [4] gives concrete evidence for
the existence of thermodynamic phase transitions; the exact solution of the one-
dimensional Hubbard model [5] clarifies the concept of the Mott insulator; while the
spinon excitations obtained from the exact solution of the Heisenberg spin chain [6]
elucidate how fractional charges could be generated from low-dimensional correlated
quantum systems. In recent years, new applications have been found in cold atom sys-
tems, quantum information, AdS/CFT correspondence and many other aspects. For
example, the Lieb-Liniger model [7, 8], the 8-potential Fermi gas model [1, 9] and
the one-dimensional Hubbard model [5] have provided important benchmarks for
one-dimensional cold atom systems and even fit experimental data with incredibly
high accuracy [10]. On the other hand, the anomalous dimensions of operators of
N = 4 super-symmetric Yang-Mills field theory can be given by the eigenvalues of
the Hamiltonians for certain integrable spin chains [11, 12].

For several decades, a number of theoretical methods have been proposed for solv-
ing the eigenvalue problem of quantum integrable models. Among them, the three
typical and most popular methods are the coordinate Bethe Ansatz method proposed
by Bethe [13], the T — Q method proposed by Baxter [14, 15] and the algebraic
Bethe Ansatz method [16-22] proposed by the Leningrad Group. Those methods
have been demonstrated to be powerful in solving the eigenvalue problem of the
known quantum integrable models and a great number of papers have been devoted
to this topic in the literature. Among the family of quantum integrable models, there
exists a large class of models that do not possess U(1) symmetry and an obvious
reference state is usually absent. Some well-known examples are the XYZ spin chain
with an odd number of sites [17], the anisotropic spin torus [23] and the quantum
spin chains with non-diagonal boundary fields [24-27]. These models have been
© Springer-Verlag Berlin Heidelberg 2015 1

Y. Wang et al., Off-Diagonal Bethe Ansatz for Exactly Solvable Models,
DOI 10.1007/978-3-662-46756-5_1



2 I Overview

found to possess important applications in non-equilibrium statistical physics (e.g.,
stochastic processes [28-33]), in condensed matter physics (e.g., a Josephson
junction embedded in a Luttinger liquid [34], spin-orbit coupling systems, one-
dimensional cold atoms coupled with a BEC reservoir, etc.) and in high energy
physics (e.g., open strings and coupled D-Branes). Many efforts have been made
[24-27, 29-32, 35-53] to approach this nontrivial problem.

Actually, Baxter’s theory [2] already provided a powerful method for approaching
exactly solvable models with functional analysis, allowing us to solve those models
without U (1) symmetry. A remarkable example is the exact solution of the eight-
vertex model [2]. Another important functional analysis method to approach these
models is the quantum separation of variables (SoV) method [54-57] proposed by
Sklyanin, which has also been successfully applied to several nontrivial quantum
integrable models. A famous example is the solution of the quantum Toda chain [54].
Nevertheless, for a long time, the Bethe Ansatz equations could only be obtained
for constrained boundary conditions [24, 25, 37] or for special crossing parameters
[26, 27, 35, 36] associated with spin-% chains or with spin-s chains [58-61]. An
analytic method for solving the integrable models with or without obvious reference
state, i.e., the off-diagonal Bethe Ansatz (ODBA) method was proposed in 2013
[62]. With this method, several models without obvious reference states were solved
exactly [62-71] by the construction of the inhomogeneous 7' — Q relations, and a
method to obtain the physical quantities in the thermodynamic limit was established
[72] subsequently, based on the ODBA equations. Soon after that, Sklyanin’s SoV
method was applied to the spin—% chains with generic integrable boundaries [73], and
aset of Bethe states was conjectured via the algebraic Bethe Ansatz [74]. A systematic
method to retrieve the Bethe-type eigenstates based on the ODBA solutions and the
SoV basis is developed in [75, 76].

This chapter is a brief introduction of the integrability associated with YBE; the
boundary conditions associated with the integrability; the factorizability induced by
YBE and the ideas of the coordinate Bethe Ansatz; the T — Q relation; and the basic
ingredients of ODBA.

1.1 Integrability and Yang-Baxter Equation

The concept of integrability originated from classical mechanics, wherein a physical
system is usually described by a set of differential equations (the equations of motion).
The solutions of these differential equations are their integrals. In such a sense,
integrable means solvable. The integrals are accompanied by some integral constants
that do not depend on time and are usually called integrals of motion or conserved
quantities. For a mechanical system with N degrees of freedom, if N independent
integrals of motion which are in involution can be obtained, then the system is
completely integrable.

A precise definition of classical integrability is given by Liouville’s theorem [77]:
Given a Hamiltonian system described by the coordinates {x;|j = 1,..., N} and
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the momenta {k;|j = 1, ..., N}, if there exists a canonical transformation x, k; —
qj, pj to make the Hamiltonian to be only a function of the canonical momenta {p},
the system is integrable. This is true because the following Poisson brackets hold:

{kj,xi}y =381, Apj.a}=38;1,
dp; dg; oH

= —, 1.1.1
dt dt  dpj ( )

which imply that the N canonical momenta are conserved quantities and the evolution
of the N canonical coordinates is linear in time . The Liouville’s theorem indicates
that the variables of an integrable system are in fact completely separable. However,
such a separation process is usually rather nontrivial.

To show the integrability clearly, let us first consider a simple classical integrable
system which might give a bridge to the quantum integrable systems: N classical
indistinguishable objects moving in a straight line. Suppose each object carries a
momentum k; initially and the collisions among the objects are elastic. Consider
the collision process between two neighboring objects. If the objects carry momenta
ki and k; before the collision, and k,f and k;. after the collision, respectively, the
conservation laws of momentum and energy require that

ki+kj =k +K, (1.1.2)
e Y 7 (1.1.3)

The above equations have two sets of solutions: (1) k; = k;, k; = ks (2) kl = kjs
k’. = k;. Since these objects are not penetrable, only the second set of solutions is
allowed, i.e., the objects exchange their momenta after the collision. If the objects
are moving in a ring (periodic boundary condition), the system can be described by a
parameter set {k, . .., kx} which does not change with the collision processes. Such
phenomenon is usually called non-diffraction behavior and is a common feature of
the integrable systems. Obviously, the following conserved quantities hold:

N
Cn=Zk’?, n=1,...,N, (1.1.4)
j=1

indicating that this system is completely integrable. If the objects move in an interval
with boundaries, the momenta they carry are no longer a conserved set of parameters.
The object carrying a momentum k; must be reflected at the boundaries and its
momentum is changed to —k; after reflection. However, the system still preserves
its integrability because of the existence of the following conserved quantities:

N
&= Kt p=1a0, N (1.1.5)
j=l
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The central point of quantum integrability lies in the conservation laws governed
by the YBE. There are several ways to derive YBE. Here we adopt Yang’s procedure
[1]. Consider that N indistinguishable quantum particles are moving in one spatial
dimension. Suppose its wave function initially takes the following asymptotic form:

. N
Wiy ~ & Zi=1 K% x) K xp &L e K XN (1.1.6)

The first particle reaches the right end of the system from the left after scattering with
all the other particles. The asymptotic wave function after this process becomes

iZN_ kixj
Wour ~ S123..N€ <=1 0 o K a3 L -0 L xy KL X, (1.1.7)

where S 23,y is the scattering matrix of particle 1 to all the other particles. If the
many-body S-matrix can be factorized as the product of two-body S-matrices

S123.8 =Si vk, kn) -+ Sy 3kt k3)S1,2(k1, k2), (1.1.8)

we call the system a factorizable system. We note that the following inversion identity
for the two-body S-matrix holds:

S1.2(k1, k2)S2,1(ka, k1) = 1. (1.1.9)

The factorizability ensures the integrability of a quantum system. To show this point
clearly, let us consider the three-particle case. There are two routes from the initial
state |1, 2, 3) to the final state |3, 2, 1) as shown in Fig. 1.1. These two routes must
be equivalent because of the uniqueness of the final wave function. If the system is
factorizable, we have the following equation:

S1,2(k1, k2)S1,3(k1, k3)S2,3(k2, k3) = S2.3(k2, k3)S1,3(k1, k3)S1 2(k1, k2).

(1.1.10)
Fig. 1.1 Schematic diagram 11,2,3)
of the Yang-Baxter equation: Si2 S23
the two routes from the / \
initial state |1, 2, 3) to the
final state |3, 2, 1) must be 12,1.3) 113.2)
equivalent
Si3 Sis
2,3,1) 13,1,2)

SZX; Si2

13,2,1)
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This is the YBE, which was realized in [78] and first emphasized by Yang [1] in
solving the one-dimensional §-potential Fermi gas model and by Baxter [2] in con-
structing the 7 — Q method for solving the two-dimensional vertex models. It was
demonstrated by Yang [79] that YBE is the sufficient condition of Yang-Baxter
quantum integrability with proper boundary conditions. This equation also ensures
factorizability, thus constituting the cornerstone for constructing and solving the
quantum integrable models. In fact, the factorizability indicates that the basic scat-
tering process is the two-body one, and that some conserved quantities that possess
the eigenvalues of Egs.(1.1.4) or (1.1.5) always exist, because of the conservation
laws of momentum and energy.

Usually, if the spectral parameters in the S-matrix are additive, i.e., S; j(k;, k;) ~
R; j(ki — kj), the YBE is written as

R; j(u;i — uj)R,-'k(u,- — uk)Rj‘k(uj — ug)
= Rji(uj—up)Ri (i — up)Ri j(uij —uj). (1.L1D)

Throughout this book we adopt the standard notations: for any matrix O €
End(V), O; is an embedding operator in the tensor space V® V® - -- ® V, which
acts as O on the jth factor space and as identity on the other factor spaces; R;_ j(u)
is an embedding operator of the R-matrix in the tensor space, which acts as identity
on the factor spaces except for the ith and jth ones. Moreover, we denote id as the
identity operator in the corresponding space.

1.2 Integrable Boundary Conditions

There are several possible boundary conditions associated with the quantum
integrability. To show them clearly, let us first introduce the procedure for con-
structing quantum integrable models based on YBE. In principle, given an R-matrix,
we can seek solutions of the equation

Ro‘é(u = V)LO.n(u)L()'n(V) = L(‘)v,,(V)L().n(u)Ro_()(u —v). (1.2.1)
Obviously, Lo ,(u) = Ron(u — 6,) is a solution of this equation. Lo ,(u) is
usually called the Lax operator and 6, is a site-dependent parameter (inhomoge-

neous parameter). Given an R-matrix satisfying YBE, we define the monodromy
matrix

To(u) = Lon(u)Lon—1(u) -+ Lo(u), (1.2.2)
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where N is the number of sites of the system. The transfer matrix of the system is
defined as the trace of the corresponding monodromy matrix in the auxiliary space

t(u) =troTo(u). (1.2.3)

The concept of the transfer matrix originated from the classical statistical models [2]
and was adopted later in the study of quantum integrable models.

An important step to construct and to solve quantum integrable models is the
RTT relation proposed by Baxter. Since

[L(),m (u), L()‘"(V)] =0, m #n, (1.2.4)
from YBE (1.2.1) we have

Ry .o — v)To(u)Tg(v)
=Ry ou —v)Lon @)L (V) - Lo(u)Lg ;(v)
= Lo yWLon@)Ryg5(u —v)---Lo(u)Lg (v)
=Ly y()Lo,n(u) -~ L (V)Lo,1 (u)Ry 5(u — v)
= Ty To(u) Ry 5(u — v). (1.2.5)

Multiplying Ro_é(u — v) from the left side of the Eq.(1.2.5) and taking the trace in

the auxiliary spaces 0 and 0, we obtain

[t(u), t(v)]=0. (1.2.6)
Expanding ¢ («) in terms of u
o0
) =D 1", (1.2.7)
n=0

we readily have that the coefficients are mutually commuting
[+, ™) = 0. (1.2.8)

Choosing one of them or a certain combination of them as a Hamiltonian H, then
[H, t"] = 0 and the model is integrable. If we obtain the eigenvalues of the transfer
matrix, we can obtain all the eigenvalues of the coefficients. The boundary condition
for the transfer matrix defined by (1.2.2) and (1.2.3) is periodic.

In most of the cases, Eq.(1.2.1) allows c-number solution Lg ,(u) = G which
is independent of the spectral parameter «. This allows us to construct the following
transfer matrix

t(u) =tro{GoLon(u)Lon—1(u)---Lo,1(u)}, (1.2.9)



