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Preface

It is a pleasure to accept the invitation of Harcourt/Academic Press to publish
a second edition. The first edition has been used mainly in graduate courses in
measure and probability, offered by departments of mathematics and statistics
and frequently taken by engineers. We have prepared the present text with
this audience in mind, and the title has been changed from Real Analysis and
Probability to Probability and Measure Theory to reflect the revisions we have
made.

Chapters 1 and 2 develop the fundamentals of measure and integration the-
ory. Included are several results that are crucial in constructing the foundations
of probability: the Radon—Nikodym theorem, the product measure theorem,
the Kolmogorov extension theorem and the theory of weak convergence of
measures. We remain convinced that it is best to assemble a complete set of
measure-theoretic tools before going into probability, rather than try to de-
velop both areas simultaneously. The gain in efficiency far outweighs any
temporary loss in motivation. Those who wish to reach probability as quickly
as possible may omit Chapter 3, which gives a brief introduction to functional
analysis, and Section 2.3, which gives some applications to real analysis. In
addition, instructors may wish to summarize or sketch some of the intricate
constructions in Sections 1.3, 1.4, and 2.7.

The study of probability begins with Chapter 4, which offers a summary of
an undergraduate probability course from a measure—theoretic point of view.
Chapter 5 is concerned with the general concept of conditional probability
and expectation. The approach to problems that involve conditioning, given
events of probability zero, is the gateway to many areas of probability theory.
Chapter 6 deals with strong laws of large numbers, first from the classical
viewpoint, and then via martingale theory. Basic properties and applications
of martingale sequences are developed systematically. Chapter 7 considers
the central limit problem, emphasizing the fundamental role of Prokhorov’s
weak compactness theorem. The last two sections of this chapter cover some
material (not in the first edition) of special interest to statisticians: Slutsky’s
theorem, the Skorokhod construction, convergence of transformed sequences
and a k-dimensional central limit theorem.




2 PREFACE

Chapters 8 and 9 have been added in the second edition, and should be of
interest to the entire prospective audience: mathematicians, statisticians, and
engineers. Chapter 8 covers ergodic theory, which is developed far enough
so that connections with information theory are clearly visible. The Shan-
non-McMillan theorem is proved and the isomorphism problem for Bernoulli
shifts is discussed. Chapter 9 treats the one-dimensional Brownian motion
in detail, and then introduces stochastic integrals and the Itd differentiation
formula.

To make room for the new material, the appendix on general topology

and the old Chapter 4 on the interplay between measure theory and topology .

have been removed, along with the section on topological vector spaces in
Chapter 3. We assume that the reader has had a course in basic analysis and is
familiar with metric spaces, but not with general topology. All the necessary
background appears in Real Variables With Basic Metric Space Topology by
Robert B. Ash, IEEE Press, 1993. (The few exercises that require additional
background are marked with an asterisk.)

It is theoretically possible to read the text without any prior exposure to
probability, picking up the necessary equipment in Chapter 4. But we expect
that in practice, almost all readers will have taken a standard undergradu-
ate probability course. We believe that discrete time, discrete state Markov
chains, and random walks are best covered in a second undergraduate prob-
ability course, without measure theory. But instructors and students usually
find this area appealing, and we discuss the symmetric random walk on R¥ in
Appendix 1. '

Problems are given at the end of each section. Fairly detailed solutions are
given to many problems, and instructors may obtain solutions to those prob-
lems in Chapters 1-8 not worked out in the text by writing to the publisher.

Catherine Doleans—Dade wrote Chapter 9, and offered valuable advice and
criticism for the other chapters. Mel Gardner kindly allowed some material
from Topics in Stochastic Processes by Ash and Gardner to be used in Chap-
ter 8. We appreciate the encouragement and support provided by the staff at
Harcourt/Academic Press.

Robert B. Ash
Catherine Doleans—Dade
Urbana, Illinois, 1999




Summary of Notation

We indicate here the notational conventions to be used throughout the book.
The numbering system is standard; for example, 2.7.4 means Chapter 2,
Section 7, Part 4. In the appendices, the letter A is used; thus A2.3 means
Part 3 of Appendix 2.

The symbol OJ is used to mark the end of a proof.

1 Sers

If A and B are subsets of a set 2, A U B will denote the union of A and B,
and A N B the intersection of A and B. The union and intersection of a family
of sets A; are denoted by | J; A; and (); A;. The complement of A (relative to
£2) is denoted by A°.

The statement “B is a subset of A” is denoted by B C A; the inclusion need
not be proper, that is, we have A C A for any set A. We also write B C A as
A D B, to be read “A is an overset (or superset) of B.”

The notation A — B will always mean, unless otherwise specified, the set of
points that belong to A but not to B. It is referred to as the difference between
A and B; a proper difference is a set A — B, where B C A.

The symmetric difference between A and B is by definition the union of
A — B and B — A; it is denoted by A A B.

If Ay CA; C---and ;2 A, = A, we say that the A, form an increasing
sequence of sets (increasing to A) and write A, 1 A. Similarly, if A; D A,
D---and (oo, A, = A, we say that the A, form a decreasing sequence of
sets (decreasing to A) and write A, | A.

The word “includes” will always imply a subset relation, and the word
“contains” a membership relation. Thus if & and & are collections of sets,
“%” includes & means that 2 C # . Equivalently, we may say that % contains
all sets in &, in other words, each A € & is also a member of Z.

A countable set is one that is either finite or countably infinite.

The empty set @ is the set with no members. The sets A;, i € I, are disjoint
ifA;NA; =@ for all i # j.




2 SUMMARY OF NOTATION

2 ReaL NUMBERS

The set of real numbers will be denoted by R, and R"” will denote n-
dimensional Euclidean space. In R, the interval (a, b] is defined as {x € R:
a < x < b}, and (a, 00) as {x € R: x > a}; other types of intervals are defined
similarly. If a = (ay,...,a,) and &= (by, ..., b,) are points in R",a <b
will mean a; < b; for all i. The interval (a, b] is defined as {x € R": a; < x;
< b;,i =1,...,n}, and other types of intervals are defined similarly.

The set of extended real numbers is the two-point compactification
R U {00} U {—00)}, denoted by R; the set of n-tuples (xi, ..., x,), with each
x; € R, is denoted by R". We adopt the following rules of arithmetic in R:

a+o00o=00+a=00, a—o00=—00+a=-—09, acl,
00 + 00 = 00, —00 — 00 = —00 (0o — oo is not defined),

_ . _f o if beR b>0,
b °°—°°_b'{—oo if beR, b<0,

=—=0, a€eR (g is not dcﬁned),

The rules are convenient when developing the properties of the abstract
Lebesgue integral, but it should be emphasized that R is not a field under
these operations. _

Unless‘otherwise specified, positive means (strictly) greater than zero, and
nonnegative means greater than or equal to zero.

The set of complex numbers is denoted by C, and the set of n-tuples of
complex numbers by C".

3 Funcrions

If f is a function from  to £’ (written as f: Q — Q') and B C &/,
the preimage of B under f is given by f~1(B)={w € Q: f(w) € B).
It follows from the definition that f~'(J,B;) =, f~'B:), f~'(";B:)
= f'B), f'(A—B) = f~'(A) - f'(B); hence f~'(A°) = [f(A)).
If & is a class of sets, f ~1(%) means the collection of sets f~!(B), B € Z.

If f: R — R, f is increasing iff x < y implies f(x) < f(y); decreasing iff
x < y implies f(x) > f(y). Thus, “increasing” and “decreasing” do not have
the strict connotation. If f,: > R,n=1,2,..., the f, are said to form
an increasing sequence iff f,(w) < fn+1(w) for all n and w; a decreasing
sequence is defined similarly.




SUMMARY OF NOTATION 3

If f and g are functions from 2 to R, statements such as f < g are a!ways
interpreted as holding pointwise, that is, f(w) < g(w) for all w € Q. Sllmlarl)f,
if fi: @ > R for each i €1, sup; fi is the function whose value at w is
sup{fi(w): i €I} o

If fi, f2,... form an increasing sequence of functions with limit f [that
is, lim, o0 fr(@) = f(w) for all w], we write f, 1 f. (Similarly, f, | f is
used for a decreasing sequence.)

Sometimes, a set such as {w € Q: f(w) < g(w)) is abbreviated as (f < g};
similarly, the preimage {w € Q: f(w) € B} is written as {f € B}.

If A C Q, the indicator of A is the function defined by Iy(w) =1 if w € A
and by /4 (w) = 0 if @ ¢ A. The phrase “characteristic function” is often used
in the literature, but we shall not adopt this term here.

If f is a function of two variables x and y, the symbol f(x, -) is used for
the mapping y — f(x, y) with x fixed.

The composition of two functions X: Q — Q' and f: Q' — Q" is denoted
by f-X or f(X).

If f: Q> R, the positive and negative parts of f are defined by f+
== max(f,0) and f~ = max(—f, 0), that is,

if f) <0,
o _[~f@ i f@ <0,
Jre) = {o if  f(@)>0.

4 ToroLocy

A metric space is a set Q with a function d (called a metric) from Q x Q
to the nonnegative reals, satisfying d(x, y) > 0,d(x, y) = 0 iff x = ¥, d(x, y)
=d(y, x), and d(x, z) < d(x, y) + d(y, z). If d(x, y) can be 0 for x # y, but
d satisfies the remaining properties, d is called a Dpseudometric (the term
semimetric is also used in the literature).

A ball (or open ball) in a metric or pseudometric space is a set of the form
B(x,r) = {y € Q: d(x, y) < r} where x, the center of the ball, is a point of
§2, and r, the radius, is a positive real number. A closed ball is a set of the
form B(x, r) = {y € Q: d(x, y) < r}.

Sequences in 2 are denoted by {xn,n =1,2,...}]. The term “lower semi-
continuous” is abbreviated LSC, and “upper semicontinuous” is abbreviated
USC.

No knowledge of general topology (beyond metric spaces) is assumed,
and the few comments that refer to general topological spaces can safely
be ignored.
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5 Vecror Spaces

The terms *“‘vector space” and “linear space” are synonymous. All vector
spaces are over the real or complex field, and the complex field is assumed
unless the term “real vector space” is used.

A Hamel basis for a vector space L is a maximal linearly independent subset
B of L. (Linear independence means that if x;,...,x, € B,n =1,2,..., and
€1, - .., Cn are scalars, then Y |, cix; = Qiff all ¢; = 0.) Alternatively, a Hamel
basis is a linearly independent subset B with the property that each x € Lis a
finite linear combination of elements in B. [An orthonormal basis for a Hilbert
space (Chapter 3) is a different concept.]

The terms “subspace” and “linear manifold” are synonymous, each referring
to a subset M of a vector space L that is itself a vector space under the
operations of addition and scalar multiplication in L. If there is a metric on L
and M is a closed subset of L, then M is called a closed subspace.

If B is an arbitrary subset of L, the linear manifold generated by B, denoted
by L(B), is the smallest linear manifold containing all elements of B, that
is, the collection of finite linear combinations of elements of B. Assuming a
metric on L, the space spanned by B, denoted by S(B), is the smallest closed
subspace containing all elements of B. Explicitly, S(B) is the closure of L(B).

6 Zorn's LEMMA

A partial ordering on a set S is a relation “<” that is
(1) reflexive: a < a; .
(2) antisymmetric: if a < b and b < a, then a = b; and
(3) transitive: ifa<band b <c,thena <c.

(All elements a, b, ¢ belong to §.)

If C C S, C is said to be totally ordered iff for all a, b € C, eithera < b or
b < a. A totally ordered subset of S is also called a chain in §.

The form of Zorn’s lemma that will be used in the text is as follows.

Let S be a set with a partial ordering “<.” Assume that every chain C in §
has an upper bound; in other words, there is an element x € § such that x > a
for all a € C. Then § has a maximal element, that is, an element m such that
for each a € S it is not possible to have m < a and m # a.

Zom’s lemma is actually an axiom of set theory, equivalent to the axiom
of choice.
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CHAPTER

1

FUNDAMENTALS OF MEASURE AND
INTEGRATION THEORY

In this chapter we give a self-contained presentation of the basic concepts of
the theory of measure and integration. The principles discussed here and in
Chapter 2 will serve as background for the study of probability as well as
harmonic analysis, linear space theory, and other areas of mathematics.

1.1 InTRODUCTION

It will be convenient to start with a little practice in the algebra of sets.
This will serve as a refresher and also as a way of collecting a few results
that will often be useful.

Let Ay, A;, ... be subsets of a set Q. If A; CA; C -+ and |2, A, =4,
we say that the A, form an increasing sequence of sets with limit A, or that
the A, increase to A; we write A, 1 A. If Ay DA D --- and N2, 4, =A4,
we say that the A, form a decreasing sequence of sets with limit A, or that
the A, decrease to A; we write A, | A.

The De Morgan laws, namely, (U, 4,)" = N, AS, (N, 4)° = U, AS, im-
ply that -

(1) if A, 1 A, then AS | A% if A, | A, then AS 1 A°.

It is sometimes useful to write a union of sets as a disjoint union. This may
be done as follows:
Let A;, A,, ...be subsets of Q. For each n we have

(2) UiiAi=AU@ATNA)U (A5 NASNA;)
U U@iN A5 NA).
Furthermore,
G) UpliAn =U (ASN - NAS_ NA,).

In (2) and (3), the sets on the right are disjoint. If the A,, form an increasing
sequence, the formulas become
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) U:;IA,- =A1UA;—ADU---U@A, —A,-1)

and
) (5) U,2°=1An = n—-l(An —Ap_ 1)

(take Ap as the empty set).

The results (1)—(5) are proved using only the definitions of union, intersec-
tion, and complementation; see Problem 1.

The following set operation will be of particular interest. If A, A, ... are
subsets of Q, we define

(6) limsup, A, =2, U2, Ak

Thus w € llmsup,, » iff for every n, w € Ay for some k > n, in other
words,

(7) o €limsup, A, iff w € A, for infinitely many n.
Also define

(8) liminf, Ay, = Une; N, Ax-
Thus w € liminf, A, iff for some n, w € A, for all kK > n, in other words,

(9) oeliminf, A, iff @ € A, eventually, that is, for all but finitely
many n.

We shall call limsup, A, the upper limit of the sequence of sets A,, and
liminf, A, the lower limit. The terminology is, of course, suggested by the
analogous concepts for sequences of real numbers

lim sup x,, = inf sup x;,

n n kx=n
lim mfx,, = sup inf x;.
n k>n

See Problem 4 for a further development of the analogy.

The following facts may be verified (Problem 5):

(10) (limsup, A,)° = liminf, AS

(11) (liminf, A,)° = limsup, A¢

(12) liminf, A, C limsup, A,

(13) IfA, 1 AorA, | A, then liminf, A, = limsup, A, = A.

In general, if liminf, A, = limsup, A, = A, then A is said to be the limit
of the sequence A, Ay, ..., we write A = lim, A,.

Problems

1. Establish formulas (1)~(5).
2. Define sets of real numbers as follows. Let A, = (—1/n, 1] if n is odd,
and A, = (—1, 1/n] if n is even. Find limsup, A, and liminf, A,.

3. Let Q = R?, A, the interior of the circle with center at ((—1)"/n, 0) and
radius 1. Find limsup, A, and liminf, A,.
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4. Let {x,} be a sequence of real numbers, and let A, = (—o00, x,). What

is the connection between limsup,_, . x, and limsup, A, (similarly for

liminf)?

Establish formulas (10)-(13).

6. Let A= (a,b) and B = (¢, d) be disjoint open intervals of R, and let
Cn, =Aifnisodd, C, = Bif n is even. Find limsup, C, and liminf, C,,.

bt

1.2 FiELps, o-FIELDS, AND MEASURES

Length, area, and volume, as well as probability, are instances of the mea-
sure concept that we are going to discuss. A measure is a set function, that
is, an assignment of a number w(A) to each set A in a certain class. Some
structure must be imposed on the class of sets on which u is defined, and
probability considerations provide a good motivation for the type of structure
required. If Q is a set whose points correspond to the possible outcomes of a
random experiment, certain subsets of  will be called “events” and assigned
a probability. Intuitively, A is an event if the question “Does  belong to A?”
has a definite yes or no answer after the experiment is performed (and the
outcome corresponds to the point w € Q). Now if we can answer the question
“Is w € A?” we can certainly answer the question “Is w € A°?,” and if, for
eachi = 1,..., n, we can decide whether or not & belongs to A;, then we can
determine whether or not w belongs to |J_, A; (and similarly for (Y, A;).
Thus it is natural to require that the class of events be closed under comple-
mentation, finite union, and finite intersection; furthermore, as the answer to
the question “Is w € Q7" is always “yes,” the entire space 2 should be an
event. Closure under countable union and intersection is difficult to Jjustify
physically, and perhaps the most convincing reason for requiring it is that a
richer mathematical theory is obtained. Specifically, we are able to assert that
the limit of a sequence of events is an event; see 1.2.1.

1.2.1 Definitions. Let # be a collection of subsets of a set Q. Then .# is
called a field (the term algebra is also used) iff Q € % and # is closed under
complementation and finite union, that is,

(@ Qex.
(b) If A € F, then A° € &
(c) IfA],Az,...,A" € #, then U?=|A,'€.¢.

It follows that # is closed under finite intersection. For if Ay, ..., A, € F,

then
c

n
A= UAE € F.
i=1 i=1

If (c) is replaced by closure under countable union, that is,



