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PREFACE

This book has been written for research workers in the field of experi-
mental elementary particle physics and is intended to present an
introduction to the theoretical methods and ideas which are used to
describe the behaviour of elementary particles.

In the last fifteen years there has been a great increase in the use of
symmetry properties, and of their associated conservation laws, in the
field of elementary particles. These subjects are very important for
they give considerable insight into the behaviour of elementary particles
without requiring an extensive background of quantum mechanics for
their understanding. At the time this book was started there was an
obvious need for a book which covered these aspects of elementary
particle physics in a manner which would appeal to experimental
research workers.

The structure of the book follows my own preference as to the order
~in which a reader could become familiar with-the subjects. In all
cases the treatment is as elementary as is consistent with clarity and no
claim is made to be rigorous. I felt that I had to draw a line beyond
which the book would not go. It was chosen =0 as to avoid the calcu-
lation of transition matrix elements, although use is made of the transi-
tion rate formula as a means of comparing cross sections or lifetimes.
The inclugion of the calculation of simple matrix elements would
merely have covered the material of Fermi’s excellent little book,
“Elementary Particles”. To have gone as far as the covariant calcu-
lation of matrix elements would have increased the size of the book to
an unreasonable extent. 'However, field theory plays an important
part in the theory of elementary particles and therefore a descriptive
chapter on this subject is included. This allows us to use Feynman
diagrams and to talk about propagators and vertices without in-
volving the reader in involved matrix element calculations. Dispersion
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theory is covered briefly but the book is too early to do more than
mention the Mandelstam representation and its developments.

I wish to acknowledge the encouragement given to me by Professor
J. C. Gunn at the critical stage in the writing of this book. I am in-
debted to Professor P. I. Dee for the opportunity to write the book and
for the encouraging atmosphere in his department, where much of the
writing was done. I am also indebted to Professor J. C. Gunn, Professor
E. H. Bellamy, Drs. B. H. Bransden, K. Burton, G. M. Lewis, R. G.
Moorhouse, D. T. Stewart for reading parts of the manuscript.  The
first half of the book was the material for a series of graduate lectures
and I am grateful for helpful comments and criticisms received from the:
students. My thanks are due to Miss Ailie Currie for her excellent
typing work and to my wife for invaluable help in checking the final

typescript.
W. 8. C. WiLLiams

Department of Natural Philosophy
The University, Glasgow, Scotland.

February, 1961
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CHAPTER |

INTRODUCTION

" Il Preamblie

The primary objective of this book is to serve as an introduction to
' the interpretation of some of the phenomena associated with elementary
particles. We do not need to confuse the situation by debating the
meaning of elementary in this respect: for us the term covers particles
which are not, within present experience, bound states of other particles.
Thus, the proton is an elementary particle, whereas the deuteron is not.
To reduce the complication we only consider processes in which the
number of particles in the initial state plus the number in the final
state is four or less; this prevents the inclusion of complicated many-
body processes and enhances the essential features. An example of
this restriction is found in our treatment of the photoproduction of
mesons. The description of the production from hydrogen contains
the most important features for this book; production from complex
nuclei is blurred by the presence of many nucleons and is-not con-
sidered, except to mention production from deuterium. There is an
excuse in this case; since the deuteron is the nearest we can approach
to a free neutron target. We shall be discussing 8 decay which does
‘involve complex niclei; however, this case can fall within our require-
ment of four or less particles in the initial plus final state if we do not
have to concern ourselves with the effects of nuclear structure.

Our treatment of processes is done in the most general way and for
the greater part without reference to any specific models other than
symmetry. By model we mean any theory or postulate as to the
nature of the particles or of the forces involved. Such models come
from quantum field theory or by suggesting a simple analytic form for
the potential existing between particles. It is possible to obtain a

] -



2 INTRODUCTION

considerable amount of information about the particles not by appeal-
ing to such methods, but by the use of various symmetry laws. The
description of the application of these laws is the main subject of this
book. The material of Chapter IX is perhaps an exception to this
restriction for it concerns field theory and the interaction’ of fields.
However, the inclusion of this chapter subsequently allows us to
discuss weak interactions (for which symmetries are important) in a
more complete manner than would otherwise be possible.

Our plan is to develop the background necessary for the application
of these symmetry laws; this will be done in the most elementary way
possible and may be illustrated by direct example of actual physical
processes. No rigour is claimed for any part of this book and the
reader is warned that a more complete approach may be more subtle
than is implied in this book; thus the theory of angular momentum
can only reach its full development in group theory.

This first chapter is devoted to presenting some of the matter which
is the basis of later chapters. We start by a brief statement of the
postulates of gquantum mechanics followed by a discussion of their
implications and of the role of observables; the next section describes
the principle of superposition of states. We then discuss the Lorentz
transformations and introduce the concepts of invariance and conserva-
tion; the chapter finishes with a section on the distinction between
laboratory and centre-of-mass coordinates.

1.2 The Postulates of Quantum Mechanics

In general, we use the Schrodinger method; we shall start by con-
sidering the Schridinger equation and its interpretation. We assume
the existence of a funetion (x,¢) which is a function of position x,
and of time ¢. This function is often called & wave function since the
earliest types studied were analytically the same as classical waves;
however, a more correct term is “‘state function” since it describes the
state of a particle. We shall use the term, wave function, or, if necessary
to stress a peint, state function. Similar functions which describe the
state of an assembly of particles will have more independent variables
of position.

Y(x,¢) for a single particle is assumed to satisfy the Schrédinger
equation

— V04 V) $(x 1) = 482 g(x, ) (L.1)

where m is the mass of the particle, hris Pla.nck’s constant divided
by 2=, and V(x) is the potenfial energy of the particle at x.

-



1.2 POSTULATES OF QUANTUM MECHANICS -3

If the energy E of the particle is a constant, we have

ih%a{:(x, 1) = Bi(x, ). (1.2)
A solution of Eq. (1.1) is
| g(x0) = p(x)exp (—iBH/h),
Hy=Bf. (1.3)

H represents ( —A2/2m) V2 + V(x) and is called the Hamiltonian operator.

The important properties of a physical system are the quantities
which can be measured or observed ; such quantities are called observ-
ables and any theory which is to predict the behaviour of the system
must give the values of these observables. If the system is described
by a state function, then there must be means of predicting the
observables from this function and the procedure for doing this is
given by a set of postulates. These postulates are the rules for inter-
preting the state function (x,%). They are:

(1) To every observable there corresponds an operator .

(2) The result of one measurement of an observable is one of the
eigenvalues of the equation

where J(x) satisfies

P¢ = pé,

- where P is the operator and p is an eigenvalue..
(3) The average value of a large number of measurements of an
observable is given by the “‘expectation value”

(P = f J* Podx, (14)°

providing that [J*¢idx = 1 and that there exist suitable boundary
conditions. (The integration is performed over all the space within
the boundary. The asterisk-indicates the complex conjugate.)

In future we shall abbreviate the integration [y* Pydx to (f|P|y).
In general, the “matrix element” (¢|P|y) = j¢* Pydx. The integral
is not always over space (fdx): it may be necessary to imply integra-
tion over other continuoys or discontinuous variables.

The formal properties of operators are important and we state some
of these. AT

(a) They are linear: that is, if = ¥ ¢, ¢,, we have that .

: - .

P.w = z Cn P‘l’n'
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(b) They obey the laws of association and distribution: that is, if
P, Q, and R are operators, we have that

P(QR) = (PQ)R and P(Q+R)= PQ+ PR,

(¢) They are Hermitian: that is,
f o+ Pdx = f P §* dx.
(d) As a result of (¢) their eigénva.lues are real:

P')bn. =Pn ‘/’n and‘ P‘lﬁ: =puv¢':’

(e) In postula,fe 2 the eigenvalues may take on continuous or dis-
crete values depending on the physical situation. Qur notation repre-
sents the dxscrete set of elgenfunctlons of the operator P by

‘l’l"/’l) ---,ll‘," Ve

which have the eigenvalues p,,p,, ..., ST respectively. Then the
eigenfunctions form an orthogonal set i x

; J"ﬁ: "'mdx I (‘ﬁnl'ﬁm)j‘:'o), m=+n,

The eigenfunctions are orthonormal if

W 1) = B

(f) If the state function is an eigenfunction of the operator P, then
. a measurement of the corresponding observable can only yield a value
equal to the eigenvalue.

(g) Operators do not necessarily obey a commutative law; that is,
two operators P and @ need not have PQy = QPy. If PQ¢ QPy,
the operators are said to commute and this statement is written
[P,Q] = 0. The state function is implied thus: [P,Q]¢ = (PQ—QP)y
for all .

(h) If [P,Q] = 0, then [P,f(Q)] = 0, where f(Q) is a function of @
which can be expanded as a power series in .

(i) If [P,Q] = 0 and Py, = p,i,, then (4, [Q]1,) = 0 if m+n.

(j) If [P,Q] = 0, then it is possible to find a set of functions which
are simultaneously eigenfunctions of P and . If [P,Q]+ @, this cannot
be done except for.a state i which has [P,@]¢ = 0. '

(k) If [P,Q] = 0 and [P, R] = 0 but [Q, B]=+ 0, then it is not pos<1ble
to find functions which are simultaneously eigenfunctions of P, Q,
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and R. It is only possible to find eigenfunctions for P and @ or for
P and R. To correspond to this we can only make simultaneous
measurements of the observables corresponding to the pair of operators
P and @Q or to the pair P and R: it is not possible to measure all three
together. The method of measurement determines the pair observed.
The exception occurs for functions which have a zero eigenvalue for @
(or R): these can also be eigenfunctions of R (or Q). It follows that
we can make simultaneous measurements of all three observables on a
state represented by such eigenfunctions. Similar properties are
obvious for the case of more than three operators. ;

(1) If oy, 4y, .., ... are an orthonormal set but are not eigen-.
functions of P and Q, then

(Sl‘mlPQI'/ln) = ;(')bmlpl'l‘r)(‘/‘AQ“bn)

The postulates 1, 2, and 3 form the basis of the interpretation of
quantum mechanies and the propertxes of the required operators are
the rules by which the mterpretatlon is conducted. In the Schrédinger
method the state function is the important part of the mechanics;
however, it is also possible to develop certain aspects not by referring
to the actual form of the state function, but by developing the formal
properties of operators. We shall use this techmque in the chapter on
angular momentum.

We must end this section by briefly clarifying the methods of
manipulating operators and the notation we shall employ. Firstly,
we define the adjoint or Hermitian conjugate (P?) of an operator P

.

by the equation
(P'[4) = (4] P9).

An operator which is Hermitian has P* = Pr It is now easy to prove
result (d). Suppose :
. P, = pp .

(l'nlp‘)bn) =Pa ¢n|¢‘n

But from the definition of an Hermitian conjugate and of an Hermman
operator we have

“
(‘){’an'ﬁn) - (P?¢nl¢'n) = (P¢yll¢nn)'
Now the matrix elements have the property that

(@) = (4] ).
(V"n!P‘tbn) = (‘/’niP!ll’n)*'

Then we have

Hence we have
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Since we require (i, |¢,) to be real, it follows that the eigenvalues of P
are real. Finally, we note that a unitary operator U has the property
Ut = U-? where UU-1 = 1.

1.3 The Principle of the Superposition of States

A further important principle in quantum mechanics is that of the
superposition of states; we shall discuss the principle briefly in order
to indicate where its use is essential to describe a physical process and
to make the reader aware that it is in almost continual use. For a
more complete discussion the reader is referred to the first chapter of
Dirac’s “Quantum Mechanics’’ (1947).

Suppose a physical system is in a state which is one of a finite or
infinite orthonormal set, viz. (e) in Section 1.2. This set of functions ¢,
however, may not be a unique way of describing the possible states of _
the system: suppose there exist a second set of functions ¢, which also
form an orthonormal set and are not in one to one correspondence
with the set . We shall have that the ¢ are eigenvalues of an operator ¢
with corresponding observable @, whilst ¢ are eigenfunctions of P
with observable P’. Then a measurement of @' will always yield an
elgenvalue of the equation

Q¢ = g¢.

Now ¢ is not an eigenfunction Q; however, the principle of super-
position effectively means that ¢ can be expanded as a linear sum of
the eigenfunctions ¢. The orthonormality of the functions permits
this analytically but the principle has deeper significance than reinfore-

ing that possibility. Thus A
v ' Yo = §a'mn¢m' (1.5)

Then if we make repeated measurement of Q' the average value
observed <@, for the state Y, is given by applying postulate 3,
Section 1.2,

@n = [0 dx
Substitute Eq. (1.5), then

© @ [(Satns)0(Saun)ax
Uéing the orthonormality of the set ¢ we have

<Q>n = E a’:m Aym G (1-6)

~ Equation (1.6) also effectively states that if the system is in state ¢,,
then the probability of finding it in state ¢,, by measurement of @’,
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i8 (@)}, @nn)- Thus the observer who makes repeated measurements
of Q' on the state |, sees the states ¢,, ¢, ds, ..., ,, ... with respective
weights (e} a,,), (@,%a,,), (@5, a,3), ..., (@,% a,,.), .... The sum of these
intensities must be unity. ;

The state ¢, therefore appears to be a linear superposition of the
states ¢, ds, b3, ..., P, .... The inverse is also true: a state ¢ will
appear to be a linear superposition of the states i, ¢y, ..., ¥,,... if &
- measurement is made of P’. The fact that a particular state can
appear to be the sum of other states is a necessary assumption in
quantum mechanics; the assumption is defined by the principle of
superposition of states. -

We can make an extension to this treatment by formally omitting
the act of making a measurement of the observables P’ or @'. The
probability of finding a certain result to the measurement becomes .
the probability of finding the system in the state which is described
by the eigenfunction having the result as eigenvalue. Thus the proba-
bility of finding a system described by the state function i, in a
state described by ¢,, is (e,% a,,,). Now it is easy to prove that

I(‘ﬁml'ﬁn) " T an‘m Dnoms

and this leads us to generalize: the probability that a system described
by a state function ¢ is in a state ¢ is

[(B9)[% A (1.7)

We can mention an excellent example of the meaningfulness of the
principle of superposition by introducing the description of polarized
light. At the moment we consider only fully polarized light; the
complete description of all states of polarization must await Chapter
VIII. Classically we know that there are two possible descriptions: one
‘describes a polarized beam by a sum with correct amplitudes and
phase of two orthogonal plane polarized beams; the other describes
the beam by a sum, with correct amplitudes and phase, of two opposite .
circularly polarized beams. This kind of summation is exactly like
that of Eq. (1.5), and it is possible to construct state functions for all
the states of polarization and to find the correct linear sum in either
description which describes the state of polarization of photons in the
beam. - Similarly, operators can be defined which will predict the
probability of finding a certain result if a particular measurement of
the state of polarization is made on the beam of photons: for example,
that a measurement of the state of circular polarization of a plane-
polarized photon finds the photon having left- or right-hand circular
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polarization with equal probability. This description does not add
anything to our knowledge of polarized light but does simplify certain.
problems.

. So far in this section the language used has been simple; it is usual
to call the set of functions ¢ or ¢ base vectors and the space in which
they exist Hilbert space. A rotation of the axes of this Hilbert space
transforms the components of the stationary vector; this is equivalent
to transforming from one description to the other, as is implied in
Eq. (1.5), that is, from one set of base vectors to another set. In fact,
analytically the connection between the components of a vector in
rotated and in unrotated space is similar to Eq. (1.5). We shall often
use superposition without mentioning it; the vector addition of angular
momentum and the partial wave analysis are two examples. -

1.4 The Lorentz Transformations

All modern quantum mechanics can only proceed meaningfully from
its assumptions if these satisfy the requirements of the special theory
of relativity (the only exception is the original Schrédinger wave
equation; for this reason it can only be used in restricted cases). We
will now discuss those postulates of relativity which will affect our
subsequent material. .

The special theory of relativity postulates that:

(1) The laws of physics formulated by an observer are mdependent '
of the state of uniform motion or position of the observer -and hls,
apparatus.

(2) The velocity of light in vacuo is the same for all such observers,

Let us see how this works by considering two observers who
have agreed to make idemtical observations on identical phenomena.
We must distinguish -carefully between the adjectives ‘‘same” and
“identical”’. We take the words ‘“‘same phenomenon” to mean a
phenomenon which has a common source for both observers; for
example the diffraction of light from a specified star. The same
words ‘‘same observation” would mean the measurement of a quantity -
associated with the common phenomenon ; for example, the wavelength
of a particuldr hydrogen spectral line in the light from our specified
star. Obviously the same quantities will depend on the relative motion
of our observers: in our example the Doppler effect alters the wave-
length. By ‘“‘identical plienomena” we mean phenomena which are
~ alike in all respects but do not have a common source; the “identical
observations™ are the separate measurements of a quantity associated
with both these phenomena. Two observers who separately measure
the wavelength of a cadmium spectral line from their own local lamp
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would be measuring identical quantities but not the same quantity.
As long as the measurements are not performed in a gravitational
field or under conditions of acceleration, two such observers of identical
quantities must yield identical results which will be independent of
the two observers’ state of relative motion. It follows that if our two
observers set up separate equations of motion which describe the
observed phenomena the two equations will be formally identical.
 The system of coordinates which each observer sets up (normally
-stationary to himself) is called an inertial frame. The coordinate axes
of two inertial frames can be connected by one or more of the following:
rotation about the origin, displacement of one origin from the other,
uniform relative velocity. As observers we are restricted to one inertial
frame, but we do know how to transform observables and equations
to the values and forms they would have if observed from another
inertial frame (here we mean an observable quantity which is the
same in the sense defined earlier). This system of transformations is
called the Lorentz transformations, after their originator. We have
already stated that in formulating a theory for any physical pheno-
menon it is essential that the transformation of our equations to the
inertial frame of a second observer does not change the consequence
8f the theory' when this requirement is satisfied the theory is said to
be Lorentz covariant. Maxwell’s electromagnetic theory, Dirac’s equa-
tion for the electron, and the Klein—Gordon equation for bosons are
all Lorentz covariant. Schrodinger’s equation is not.

We shall now consider the Lorentz transformations. We commence
by defining two kinds of transformations:

(1) A “passive or coordinate transformation” is one in which the
physical system is unchanged and we consider the relation between a
quantity as observed from one inertial frame and the same quantity
as observed from a second inertial frame; geometrically, this corre-
sponds to a displacement and rot8tion of a four-dimensional eoordinate
system, \

(2) In contrast, an active transformation is one in which a Lorentz
transformation is applied to the physical system while the observer’s
inertial frame is unchanged; geometrically, this corresponds to a rota-
tion and displacement of the physical system within a fixed four-
dimensional coordinate system.

In mathematical formalism these two types of transformation are
indistinguishable; however, for clarity in discussion we shall consider
only coordinate transformations. We are therefore interegted in the
relation between the results of measurements made by two separate
observers on the same quantity.



