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This book is intended for junior and senior engineering students who are interested in learning
some fundamental aspects of fluid mechanics. This area of mechanics is mature, and a com-
plete coverage of all aspects of it obviously cannot be accomplished in a single volume. We
developed this text to be used as a first course. The principles considered are classical and
have been well-established for many years. However, fluid mechanics education has improved
with experience in the classroom, and we have brought to bear in this book our own ideas
about the teaching of this interesting and important subject. This second edition has been
prepared after several years of experience by the authors using the first edition for an intro-
ductory course in fluid mechanics. Based on this experience, along with suggestions from
reviewers, colleagues, and students, we have made a number of changes in this new edition.
Many of these changes are minor and have been made to simply clarify and expand certain
ideas and concepts. Major changes include the addition of a new chapter on turbomachines
and the addition of many new problems.

One of our aims is to represent fluid mechanics as it really is—an exciting and useful
discipline. To this end, we include analyses of numerous everyday examples of fluid-flow
phenomena to which students and faculty can easily relate. In the second edition 170 examples
are presented that provide detailed solutions to a variety of problems. Also, a generous set of
homework problems in each chapter stresses the practical application of principles. Those
problems that can be worked best with a programmable calculator or a computer, about 10%
of the problems, are so identified. Also included in most chapters of the second edition are
several open-ended problems. These problems require critical thinking in that in order to
work them one must make various assumptions and provide the necessary data. Students are
thus required to make reasonable estimates or to obtain additional information outside the
classroom. These open-ended problems are clearly identified. Another new feature is the
inclusion of extended, laboratory-type problems in most chapters. Actual experimental data
are included in these problems, and the student is asked to perform a detailed analysis of the
problem similar to that required for a typical laboratory. It is believed that this type of problem
will be particularly useful for fluid mechanics courses that do not have a laboratory as a part

ix
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Preface

of the course. These laboratory-type problems are located at the end of the problems section
in most chapters and can be easily recognized. The examples and homework problems illus-
trate the considerable versatility of fluid mechanical analyses.

Our message to students is that fluid motion is consistent with well-established physical
laws. The mathematical statements, or equations that represent these laws and thus describe
fluid behavior, form the basis for problem solving. In some instances, the solution of these
fundamental equations results in the answers sought. Often, however, experimental data-based
correlations and dimensional analysis are required in addition to basic equations for solution
closure.

Since this is an introductory text, we have designed the presentation of material to allow
for the gradual development of student confidence in fluid mechanics problem solving. Each
important concept or notion is considered in terms of simple and easy-to-understand circum-
stances before more complicated features are introduced.

In this second edition two systems of units continue to be used throughout the text: the
British Gravitational System (pounds, slugs, feet, and seconds), and the International System
of Units (newtons, kilograms, meters, and seconds). Both systems are widely used, and we
believe that students need to be knowledgeable and comfortable with both systems. Approx-
imately one-half of the examples and homework problems use the British System; the other
half is based on the International System.

In the first four chapters, the student is made aware of some fundamental aspects of
fluid motion, including important fluid properties, regimes of flow, pressure variations in
fluids at rest and in motion, fluid kinematics, and methods of flow description and analysis.
Some new material on non-Newtonian fluids has been added in Chapter 1. The Bernoulli
equation is introduced in Chapter 3 to draw attention, early on, to some of the interesting
effects of fluid motion on the distribution of pressure in a flow field. We believe that this
timely consideration of elementary fluid dynamics will increase student enthusiasm for the
more complicated material that follows. In Chapter 4, we convey the essential elements of
kinematics, including Eulerian and Lagrangian mathematical descriptions of flow phenomena,
and indicate the vital relationship between the two views. For teachers who wish to consider
kinematics in detail before the material on elementary fluid mechanics, Chapters 3 and 4 can
be interchanged without loss of continuity.

Chapters 5, 6, and 7 expand on the basic analysis methods generally used to solve or
to begin solving fluid mechanics problems. Emphasis is placed on understanding how flow
phenomena are described mathematically and on when and how to use infinitesimal and finite
control volumes. Owing to the importance of numerical techniques in fluid mechanics, we
have included additional introductory material on this subject in Chapter 6. Some simple
examples have been added so that students can gain some insight into this approach to the
solution of problems. The effects of fluid friction on pressure and velocity distributions are
also considered in some detail. A formal course in thermodynamics is not required to under-
stand the various portions of the text that consider some elementary aspects of the thermo-
dynamics of fluid flow. Experiments or tests must be relied on when mathematical analysis
alone is inadequate to solve a problem. Chapter 7 features the advantages of using dimensional
analysis and similitude for organizing test data and for planning experiments and the basic
techniques involved.

Chapters 8 to 11 offer students opportunities for the further application of the principles
learned early in the text. Also, where appropriate, additional important notions such as bound-
ary layers, transition from laminar to turbulent flow, and flow separation are introduced.
Practical concerns such as pipe flow, open-channel flow, flow measurement, drag and lift,
and the effects of compressibility are discussed. In Chapter 11 a new section on two-dimen-
sional compressible flow has been included.



Preface Xi

A major new feature of the second edition is the addition of Chapter 12—
Turbomachines. This new chapter, in keeping with the general philosophy of the rest of the
book, places emphasis on the fluid mechanics fundamentals associated with turbomachines,
particularly pumps and turbines.

There are two important supplements that are available to professors who adopt this
book for classroom use. The first is an Instructor’s Manual containing complete, detailed
solutions to all the problems in the text and selected enlarged figures suitable for making
transparency masters. The second is software that consists of programs that provide the
solutions to all the computer-designated problems in the book. Both supplements may be
obtained directly from the publishers.

Students who study this text and who solve a representative set of the exercises provided
should acquire a useful knowledge of the fundamentals of fluid mechanics. Faculty who use
this text are provided with numerous topics to select from in order to meet the objectives of
their own courses. More material is included than can be reasonably covered in one term. All
are reminded of the fine collection of supplementary material. Where appropriate, we have
cited throughout the text the articles and books that are available for enrichment.

We express our thanks to the many colleagues who have helped in the development of
this text. We are indebted to the following reviewers of the second edition for their comments
and suggestions:

Dr. Michael Isacson Professor Rayhaneh Akhavan Dr. Chengiz Altan
University of British University of Michigan University of Oklahoma
Columbia Dr. John Kuhlman Professor Robert Medrow
Professor Darryl Alofs West Virginia University University of Missouri
University'of Missouri-Rolla Professor Donald Richards Professor Frank Champagne
Professor Louis Motz Rose Hulman Institute of University of Arizona
University of Florida Technology Professor Dimos Pouilikakos
Professor Jim Liburdy Professor James Wallace University of Illinois
Clemson University University of Maryland-

Professor Walter Schimmel College Park

Embry University-Riddle Professor Young Cho

Aeronautical Drexel University

We also appreciate the help provided by Dennis Cronin, Paul Tsao, and Jeff Foster relative
to the homework problems and solutions manual. We wish to express our gratitude to the
many persons who supplied the photographs used throughout the text and to Milton Van
Dyke for his help in this effort. We acknowledge the superb typing of the manuscript by
Carolyn Taylor. Finally, we thank our families for their continued encouragement during the
writing of this second edition.

Working with students over the years has taught us much about fluid mechanics edu-
cation. We have tried in earnest to draw from this experience for the benefit of users of
this book. Obviously we are still learning, and we welcome any suggestions and comments
from you.

BRUCE R. MUNSON
DoNALD F. YOouNG
THEODORE H. OKIISHI
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