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Preface

This book is intended for graduate students and researchers who have interest in
functional analysis, in general and summability theory, in particular. It describes
several useful topics in summability theory along with applications. The book
consists of nine chapters and is organized as follows:

Chapter “An Introduction to Summability Methods” is introductory in nature.
This chapter focuses on the historical development of summability theory right
from Cauchy’s concept to till date. Summability methods developed from the two
basic processes—T7-process and ¢-process—have also been discussed in this
chapter.

Chapter “Some Topics in Summability Theory” deals with the study of some
classical and modern summability methods, and the connections among them. In
fact, results concerming summability by weighted mean method, the (M, 4,)
method, the Abel method, and the Euler method are presented. Then the sequence
space A,, r>1 being a fixed integer, is defined and a Steinhaus type theorem is
proved. The space A, is then studied in the context of sequences of 0’s and 1’s.
Further, the core of a sequence is studied, an improvement of a result of
Sherbakhoff is proved and a very simple proof of Knopp’s core theorem is then
deduced. Finally, a study of the matrix class (¢, ¢) is presented.

Chapter “Summability and Convergence Using Ideals™ is concentrated on dif-
ferent concepts of summability and convergence using the notions of ideals and
essentially presents the basic developments of these notions. This chapter starts
with the first notion of ideal convergence and goes on to discuss in detail how the
notion has been extended over the years from single sequences to double sequences
and nets. This chapter also discusses some of the most recent advances made in this
area, in particular applications of ideal convergence to the theory of convergence of
sequences of functions. Some problems are also listed which still remain open.

In chapter “Convergence Acceleration and Improvement by Regular Matrices”,
a new, non-classical convergence acceleration concept is studied and compared
with the well-known classical convergence acceleration concept. It is shown that
the new concept allows to compare the speeds of convergence for a larger set of
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sequences than the classical convergence acceleration concept. Also, regular matrix
methods that improve and accelerate the convergence of sequences and series are
studied. The results described in this chapter are further applied to increase the
order of approximation of Fourier expansions and Zygmund means of Fourier
expansions in certain Banach spaces.

Chapter “On Summability, Multipliability and Integrability” deals with the study
of summability and multipliability of vector families indexed by well-ordered sets
of real numbers. These concepts generalize the classical notions of convergence of
infinite series and products. The studies are also motivated by problems in inte-
gration theory of functions of one variable. In particular, the chapter describes the
relation between integrability and product integrability on the one side, and
summability and multipliability on the other side. Applications in the theory of
differential equations with impulses and distributional differential equations are
presented, and concrete examples are introduced to illustrate the derived theoretical
results.

In chapter “Multi-dimensional Summability Theory and Continuous Wavelet
Transform”, the connection between multi-dimensional summability theory and
continuous wavelet transform is investigated. Two types of f-summability of
Fourier transforms are considered, the circular and rectangular summability. Norm
and almost everywhere convergence of the 6-means are shown for both types. The
inverse wavelet transform is traced back to summability means of Fourier trans-
forms. Using the results concerning the summability of Fourier transforms, norm
and almost everywhere convergence of the inversion formula are obtained for
functions from the L, and Wiener amalgam spaces.

In chapter “Absolute Riesz and Related Summability Methods”, several theo-
rems dealing with the absolute Riesz summability of infinite series have been given.
Additionally, some theorems which are generalization of these theorems to absolute
matrix summability have been given by using several different sequences.

Chapter “Some Applications of Summability Theory” discusses some applica-
tions of summability theory in sequence spaces defined by certain functions and
summability methods, which are related to statistical convergence and their appli-
cations. Several topological and geometric properties of the sequence spaces, such
as the (f)-property, Banach—Saks property, Kadec—Klee property, Opial property,
etc., are also discussed. Then some applications of summability theory to Tauberian
theorems, both in ordinary sense and in statistical sense are discussed. Finally, some
results related to the Tauberian theory characterized by weighted summability
methods such as, the generalized de la Vallée-Poussin method, generalized
Norlund-Cesaro, etc., are presented.

Chapter “Degree of Approximation of Functions Through Summability Methods”
first discusses a result on the degree of approximation of functions belonging to the
Lip(a, r) class, using almost Riesz summability method of its infinite Fourier series.
Then a result concerning the degree of approximation of the conjugate of a function f
belonging to Lip(&(t), r) class by Euler (E, g) summability of conjugate series of its
Fourier series has been established. The results discussed in this chapter generalize
several existing results.
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An Introduction to Summability Methods

U.K. Misra

Abstract This chapter contains four sections. First section is introductory in which
a brief description of the development of the subject is presented. In the second
section, the basic technique of the summability method has been discussed. As the
summability methods are considered to be derived from two general processes, in
section three the two summability processes and their characterizations have been
presented. Section four is devoted to different methods of summabilties which are
derived from the two basic processes and their properties have been discussed. The
summability methods such as matrix summability, Cesaro summability, Holder sum-
mability, Harmonic summability, Generalized Cesaro summability, Riesz’s typical
means summability, Norlund summability, Riesz’s summability, generalized Nor-
lund summability, indexed summability, Abel summability, Euler summability, Borel
summability, Hausdorff summability, and Banach summability methods have been
discussed in sequel.

Keywords Infinite series * Sequence * Summability methods *+ Absolute summa-
bility + Indexed summability

1 Introduction

The concept of “the infinity” seems to have excited human thought right from the time,
man tried to put his intellect to his observations. The consciousness of the limitless
expanse of space, the awareness of the everlasting stream of time and the experience
of non-terminating chain of counting numbers are some of the fascinating aspects
of realities which astounded the human mind. They did direct human imagination
towards the concept of unattainable and limitless infinity.

U.K. Misra ()
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2 U.K. Misra

With the introduction of algebraic operations in the domain of number system,
there emerged the concept of “infinite series”. The uses of such series can be traced
far back into the realm of the history of mathematics itself. These were inherent in
the methods of exhaustion restored to by Greek mathematicians for finding lengths
of curves, areas bounded by the simple curves and volumes of simple solid bodies.
However, the precise concept of the sum of an infinite series remained obscure until
the recent past. In the beginning, while using infinite series, there was a tendency to
interpret the concepts of an infinite sum as an extension of a finite sum. Indeed, in
the absence of a clear concept of infinite series, mathematicians tended to believe
that all the rules applicable to a finite sum would as such be applicable to infinite
series too. But then applications of such concepts to infinite series led many times
to irreconcilable situations for which there had been no satisfactory explanations. It
may be of interest to note that, while some times arithmetic operations when applied
to certain infinite series worked very well, yet the same applied to some other series
led to paradoxical situations like 1 = 0.

In the seventeenth century, James Gregory worked on infinite series and pub-
lished several papers on Maclaurin series. He termed the former class of infinite
series as “‘convergent series” [8]. The aim of such a classification was to caution
mathematicians against the uses of “non-convergent series,” which may bring in a
contradiction. The mathematicians prior to the time of Leonard Euler (1707-1783),
used only convergent series and carefully avoided the use of non-convergent ones.
And the mystery of the anomalous behavior of infinite series remained obscure for
quite sometime.

In the eighteenth century, Leonhard Euler (1707-1783) developed the theory of
hyper-geometric series and g-series and gave more of an idea about infinite and non-
convergent series. Mathematicians prior to him had used only convergent series and
carefully avoided the use of non-convergent ones, and the mystery of the anomalous
behavior of infinite series remained obscure for quite some time.

Carl Friedrich Gauss, the German Mathematician, was a pioneer in the introduc-
tion of the concept of infinite into Mathematical Analysis. However, the credit for
clearly defining the sum of an infinite series goes to the French mathematician A.L.
Cauchy (1789-1857), who had been a pioneer in introducing rigor into mathematical
analysis. It was he who crystallized the concept of limit in definite terms. In 1821,
Cauchy formalized ideas concerning convergence and divergence of infinite series.
He clearly defined the sum of an infinite series based on the concept of limit devel-
oped by him in his book entitled “Analyse Algebrique”. This sum is known as the
“natural sum” or Cauchy’s sum of a series.

Let {u,}. be a given real- or complex-valued sequence. Then an expression of the
form

wy+ux+uz+ug+ - (1)

is called an “infinite series” and is generally denoted by
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n=I

in brief. If all of the terms of the sequence {u, } after a certain number are zero, then
the expression

uyturtustug+-+uy 3)

is called a “finite series” and is written simply as

> i @
n=1

An expression of the form

o0
Zunzzu,,=u1+uz+u3+u4+-~-, (5
n=I1

which involves the addition of infinitely many terms, has indeed no meaning, as
there is no way to sum an infinite number of terms. However, in order to accord some
plausible meaning to such an expression, Cauchy uses the concept of “limits”. For
this Cauchy forms a sequence of partial sums of the series and defines the sum

uy+ur+us+ug+ - (6)

as the limiting value of the partial sums as the number of terms tend to infinity.
Let > u, be an infinite series with real or complex terms and let, for n =
12630 0

Spy=uy+uy+us+us+---+uy @)

Then s, is called the nth partial sum of the series and the sequence {s, }, thus obtained,
is called the sequence of partial sums of the series >_ u,. An infinite series > u, is
said to converge, diverge or oscillate, according as its sequence of partial sums {s,}
converges, diverges or oscillates. According to Cauchy the infinite series »_ u,, has
the sum ‘s’ (known as a Cauchy sum) if and only if there exists a finite real number
‘s’ such that, for every € > 0, there exists a natural number ng such that

|s, —s| <€, forevery n > ny. (8)

That is to say, lim s, =s. A series for which Cauchy’s sum exists (that is,
n—0Q

lim s, = s, afinite number) is termed as convergent. It was easily verified that series
n—00

classified as convergent by Gregory were all convergent in the sense of Cauchy also.
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The series which are not convergent, that is, the series having no sum in the sense
of Cauchy, were termed as “divergent.” According to Cauchy divergent series do
not belong to the understandable domain of mathematics and the convergent series
were the only valid mathematical entities. Before Cauchy, series, convergent, and
divergent were both in use and no distinction was made between the two. This led to
paradoxes and irreconcilable situations. But Cauchy, in one stroke, removed all of the
contradictions and paradoxes, by outcasting divergent series from the valid domain
of mathematics. It brought much needed relief to the-then mathematicians, whose
faith in their methodology was badly shaken, owing to the frequent appearances of
paradoxes and contradictions. After this, it began to be regarded that the problem of
the sum of an infinite series had fully and finally been resolved. Thus, even though
divergent series were used to good purposes earlier by such eminent mathemati-
cians as Leibnitz, Euler and others, yet they were thrown out from the valid domain
of mathematics without hesitation. The concept of the sum of an infinite series, as
defined by Cauchy, was so natural, so efficacious that mathematicians thought that
the problem of the sum of the infinite series had finally been settled once and for all.

Abel (a Norwegian Mathematician, 1802-1829) [1] was another important con-
tributor for giving ideas concerning convergence and divergence in the early part of
nineteenth century. He was so excited with the discovery, that, in a letter to Holm-
bee, expressed his conviction in such telling words as “Les series divergents sont, en
general, quelque choose de bien fatal et ¢ est une honte qu on ose y fonder aucune
demonstration” (Divergent series are, in general, sometimes quite calamitous and it
1s a shame that any one dares to base a proof on them.).

Since mathematics is based on principles of reasoning, any slightest deviation from
the right track of the flow of mathematical ideas would ultimately end in disharmony.
Even after the theory propounded by Cauchy had received the stamp of finality of
almost all of the mathematicians of the time, it did face the same disharmonies partic-
ular to the field of orthogonal expansion of continuous functions and product series.
It was noted that certain non-convergent series (Fourier series) behaved very much
in the same way with regard to arithmetical operations on them as convergent ones,
and the calculation based on certain asymptotic series, not convergent in the sense of
Cauchy, used in dynamical astronomy, were quite valid and verifiable otherwise. All
these facts, in course of time led mathematicians to conclude that the Cauchy method
of assigning a sum to an infinite series was of far-reaching importance, and yet was
not that devilish as they were earlier made out to be, All these situations stirred the
imagination of several inquisitive mathematicians to develop, into the character of
the sum of an infinite series, over and above that of Cauchy, of assigning sum. Per-
sistent efforts made by a number of eminent mathematicians led to the discovery of
alternative methods, which were closely connected to that of Cauchy, yet associated
sums, even to divergent series, particularly to those whose partial sums oscillate. By
the close of the nineteenth century, several alternative methods of assigning sums to
infinite series were invented by mathematicians. These methods of summation were
termed “Summability Methods.”
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Some of the most familiar methods of summability are those that are associated
with the names of great mathematicians like Abel, Borel, Cesaro, Euler, Hausdorff,
Holder, Lambert, Norlund, Reisz, Riemann, and Lebesgue. Thus, by the third decade
of the twentieth century, a very rich and fruitful theory of summability had been
introduced. This theory found applications even in such remote fields as probability
and the theory of numbers. Norbert Wiener applied Lambert’s method of summation
to prove the prime number theorem.

As Cauchy’s concept of sum of a convergent series well withstood all of the
rigors of mathematics, the framework of the summability methods was, in general,
so devised as to assign convergent series, the same sum as that assigned by Cauchy.
This leads to the following terminologies.

Definition 1.1 A summability method is a function from the set of sequences of
partial sums of a series to a value. Thus, in its broadest meaning, summability is the
theory of the assigning of limits which is fundamental in analysis, function theory,
topology, and functional analysis.

Definition 1.2 A summability method is said to be regular if the method sums all
convergent series to its Cauchy’s sum [9].

Definition 1.3 Two summability methods are said to be consistent if they assign the
same sum to the same series [9].

Thus, regular methods of summability may be regarded as a generalization of
Cauchy’s concept of convergence. Just as the concept of ordinary convergence has
been generalized into that of summability, commonly termed as “Ordinary Summa-
bility,” the concept of absolute convergence too has been extended similarly into a
concept called as “Absolute Summability.”

2 Basic Technique

The basic technique of all summability methods is to transform a given infinite series
or sequence of partial sums, into another series, or sequence, on which Cauchy’s
method is applicable. The transformation chosen is usually linear and is such that it
preserves Cauchy’s sum when applied to convergent series. Further, a transformation,
to be worthwhile, should be such as to transform some divergent series too into ones
on which Cauchy’s method of assigning sum cannot be applicable.

Thus, if T is a transformation which represents a summability method, then it
should have the following properties:

(i) If 3" a, is a convergent series with sum ‘s’, then T > q, is also convergent
having the same sum ‘s’.
(ii) If 3" a, and > b, are two series and p and g are real or complex numbers, then

T(pD an+q D ba)=pT Y a)+q(T > by )
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(iii) The T-method is able to assign a sum to at least one infinite series for which
Cauchy’s method fails.

Conditions (i), (ii), and (iii) are called the regularity conditions, the linear condi-
tion, and range condition, respectively.

3 Basic Process

All summability methods are considered to be derived from the following two general
basic processes:

(i) Methods based on a sequence-to-sequence transformation, usually termed as a
T-process and

(ii) Methods based on a sequence-to-function transformation, usually termed as a
¢-process.

3.1 T-Process

Summability methods, in which the sequence of partial sums of an infinite series is
transformed into another sequence, constitute a 7-process. They are usually called
sequence-to-sequence transformation methods.

Let > u, be an infinite series with sequence of partial sums {s,}. Then > u,
has the Cauchy’s sum if nll)n;o s, = §, where ‘s’ is a finite number. Let T be a linear

transformation and let {t,} = {7 (s,)}. Then the T-method consists in the formulation
of an auxiliary sequence {f,}, obtained by a sequence-to-sequence transformation.

In analogy with Cauchy’s method, we say that a series >_ u, is summable by a
T-method to the sum ‘s’ if and only if

lim #, = s. (10)

n—oo

Further, we say that the series ) _ u, is abselutely convergent if _ |u,| < oo, which
is same as

D lsn = sua] < co. (11)
That is, the sequence {s,} is of bounded variation. Following the same analogy,

the series > u, is said to be absolutely summable by a T-method or simply |77-
summable, if and only if the auxiliary sequence {z,} is of bounded variation: that is

D ltn = tas| < 00 (12)



