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Preface

Fourier analysis is an established subject in the core of pure and applied
mathematical analysis. Not only are the techniques in this subject of funda-
mental importance in sall areas of science and technology, but both the integral
Fourier transform and the Fourier series also have significant physical inter-
pretations. In addition, the computational aspects of the Fourier series are
especially attractive, mainly because of the orthogonality property of the se-
ries and of its simple expression in terms of only two functions: sinz and
COBZT.

Recently, the subject of “wavelet analysis” has drawn much attention from
both mathematicians and engineers alike. Analogous to Fourier analysis, there
are also two important mathematical entities in wavelet analysis: the “integral
wavelet transform” and the “wavelet series”. The integral wavelet transform
is defined to be the convolution with respect to the dilation of the reflection of
some function 9, called a “basic wavelet”, while the wavelet series is expressed
in terms of a single function 9, called an “R-wavelet” (or simply, a wavelet)
by means of two very simple operations: binary dilations and integral transla-
tions. However, unlike Fourier analysis, the integral wavelet transform with a
basic wavelet 9 and the wavelet series in terms of a wavelet 3 are intimately
related. In fact, if 9 is chosen to be the “dual” of 9, then the coefficients of
the wavelet series of any square-integrable function f are precisely the values
of the integral wavelet transform, evaluated at the dyadic positions in the cor-
responding binary dilated scale levels. Since the integral wavelet transform
of f simultaneously localizes f and its Fourier transform f with the zoom-in
and zoom-out capability, and since there are real-time algorithms for obtaining
the coefficient sequences of the wavelet series, and for recovering f from these
sequences, the list of applications of wavelet analysis seems to be endless. On
the other hand, polynomial spline functions are among the simplest functions
for both computational and implementational purposes. Hence, they are most
attractive for analyzing and constructing wavelets.

This is an introductory treatise on wavelet analysis with an emphasis on
spline-wavelets and time-frequency analysis. A brief overview of this subject,
including classification of wavelets, the integral wavelet transform for time-
frequency analysis, multiresolution analysis highlighting the important prop-
erties of splines, and wavelet algorithms for decomposition and reconstruction
of functions, will be presented in the first chapter. The objective of this chap-
ter is not to go into any depth but only to convey a general impression of what



2 Preface

wavelet analysis is about and what this book aims to cover.

This monograph is intended to be self-contained. The only prerequisite is
a basic knowledge of function theory and real analysis. For this reason, pre-
liminary material on Fourier analysis and signal theory is covered in Chapters
2 and 3, and an introductory study of cardinal splines is included in Chapter
4. 1t must be pointed out, however, that Chapters 3 and 4 also contribute as
an integral part of wavelet analysis. In particular, in Chapter 3, the notion of
“frames”, and more generally “dyadic wavelets”, is introduced in the discus-
sion of reconstruction of functions from partial information of their integral
wavelet transforms in time-frequency analysis.

The common theme of the last three chapters is “wavelet series”. Hence,
a general approach to the analysis and construction of scaling functions and
wavclets is discussed in Chapter 5. Spline-wavelets, which are the simplest
examples, are studied in Chapter 6. The final chapter is devoted to an inves-
tigation of orthogonal wavelets and wavelet packets.

The writing of this monograph was greatly influenced by the pioneering
work of A. Cohen, R. Coifman, 1. Daubechies, S. Mallat, and Y. Meyer, as
well as my joint research with X. L. Shi and J. Z. Wang. In learning this
fascinating subject, I have benefited from conversations and correspondence
with many colleagues, to whom I am very grateful. In particular, I would
like to mention P. Auscher, G. Battle, A. K. Chan, A. Cohen, I. Daubechies,
D. George, T. N. T. Goodman, S. Jaffard, C. Li, S. Mallat, Y. Meyer, C. A.
Micchelli, E. Quak, X. L. Shi, J. Stockler, J. Z. Wang, J. D. Ward, and R.
Wells. Among my friends who have read portions of the manuscript and made
many valuable suggestions, I am especially indebted to C. Li, E. Quak, X. L.
Shi, and N. Sivakumar. As usual, I have again enjoyed superb assistance from
Robin Campbell, who TEXed the entire manuscript, and from Stephanie Sellers
and my wife, Margaret, who produced the manuscript in camera-ready form.
Finally, to the editorial office of Academic Press, and particularly to Charles
Glaser, who has complete confidence in me, I wish to express my appreciation
of their efficient assistance and friendly cooperation.

College Station, Texas Charles K. Chui
October, 1991

Preface to the second printing

The second printing gave me an opportunity to make some corrections and
append two tables of weights for implementing spline-wavelet reconstruction
and decomposition. The inclusion of these numerical values was suggested by
David Donoho to whom I am very grateful. I would also like to thank my
student Jun Zha for his assistance in producing these two tables.

April, 1992 C.K.C.
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1 An Overview

“Wavelets” has been a very popular topic of conversations in many scien-
tific and engineering gatherings these days. Some view wavelets as a new basis
for representing functions, some consider it as a technique for time-frequency
analysis, and others think of it as a new mathematical subject. Of course, all
of them are right, since “wavelets” is a versatile tool with very rich mathe-
matical content and great potential for applications. However, as this subject
is still in the midst of rapid development, it is definitely too early to give a
unified presentation. The objective of this book is very modest: it is intended
to be used as a textbook for an introductory one-semester course on “wavelet
analysis” for upper-division undergraduate or beginning graduate mathemat-
ics and engineering students, and is also written for both mathematicians and
engineers who wish to learn about the subject. For the specialists, this volume
is suitable as complementary reading to the more advanced monographs, such
as the two volumes of Ondelettes et Opérateurs by Yves Meyer, the edited
volume of Wavelets—-A Tutorial in Theory and Applications in this series, and
the forthcoming CBMS volume by Ingrid Daubechies.

Since wavelet analysis is a relatively new subject and the approach and
organization in this book are somewhat different from that in the others, the
goal of this chapter is to convey a general idea of what wavelet analysis is about
and to describe what this book aims to cover.

1.1. From Fourier analysis to wavelet analysis
Let L?(0,2n) denote the collection of all measurable functions f defined
on the interval (0, 27) with

/0 ” f(@)dz < oo.

For the reader who is not familiar with the basic Lebesgue theory, the sacrifice
is very minimal by assuming that f is a piecewise continuous function. It will
always be assumed that functions in L?(0, 27) are extended periodically to the
real line

R := (—o00, 00),

namely: f(z) = f(x — 27) for all z. Hence, the collection L2(0,2n) is often
called the space of 2m-periodic square-integrable functions. That L?(0,27) is
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a vector space can be verified very easily. Any f in L2(0,27) has a Fourier
serics representation:

o0
f@)= ) cpe™, (1.1.1)
n=-0o0
where the constants c,, called the Fourier coefficients of f, are defined by

1 2

=75 . f(z)e *"=dz. (1.1.2)

The convergence of the series in (1.1.1) is in L2(0, 27), meaning that

2n N ] 2
flz) — Z cnet™*| dzr = 0.

n=—M

lim
M,N—oo Jq

There are two distinct features in the Fourier series representation (1.1.1).
First, we mention that f is decomposed into a sum of infinitely many mutually
orthogonal components g,(z) := c,e'™*, where orthogonality means that

{gm,gn)* =0, forall m#n, (1.1.3)

with the “inner product” in (1.1.3) being defined by

2

(Goes ) :=§1; [ om0 (1.1.4)

That (1.1.3) holds is a consequence of the important, yet simple fact that
wn(x) := e, n=-..--,~-1,0,1,..., (1.1.5)

is an orthonormal (o.n.) basis of L%(0, 2w). The second distinct feature of the
Fourier series representation (1.1.1) is that the o.n. basis {w,n} is generated by
“dilation” of a single function

w(z) := e (1.1.6)

that is, wa(z) = w(nz) for all integers n. This will be called integral dilation.
Let us summarize this remarkable fact by saying that every 2m-periodic
square-integrable function is generated by a “superposition” of integral dilations
of the basic function w(z) = e'*.
We also remark that from the o.n. property of {w,}, the Fourier series
representation (1.1.1) also satisfies the so-called Parseval Identity:

1 [==]

— "|f(z)|2dx= S leal® (1.1.7)

2n ) e oo
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Let £2 denote the space of all square-summable bi-infinite sequences; that is,
{cn} € € if and only if

o«

Y leal? < oo

n=—00

Hence, if the square-root of the quantity on the left of (1.1.7) is used as
the “norm” for the measurement of functions in L?(0,2w), and similarly, the
square-root of the quantity on the right of (1.1.7) is used as the norm for £,
then the function space L?(0, 27) and the sequence space £2 are “isometric” to
each other. Returning to the above mentioned observation on the Fourier series
representation (1.1.1), we can also say that every 2w-periodic square-integrable
Junction is an £%-linear combination of integral dilations of the basic function
w(z) = e*=.
We emphasize again that the basic function

w(z) = €** = cosz + isinz,

which is a “sinusoidal wave”, is the only function required to generate all 27-
periodic square-summable functions. For any integer n with large absolute
value, the wave w,(z) = w(nz) has high “frequency”, and for n with small
absolute value, the wave w, has low frequency. So, every function in L?(0, 27)
is composed of waves with various frequencies.

We next consider the space L?(R) of measurable functions f, defined on
the real line R, that satisfy

[ i@pds < oo

Clearly, the two function spaces L?*(0,2nr) and L*(R) are quite different. In
particular, since (the local average values of) every function in L?(R) must
“decay” to zero at oo, the sinusoidal (wave) functions w, do not belong to
L3*(R). In fact, if we look for “waves” that generate L3 (R), these waves should
decay to zero at +oo; and for all practical purposes, the decay should be very
fast. That is, we look for small waves, or “wavelets”, to generate L*(R). Asin
the situation of L?(0,27), where one single function w(z) = e** generates the
entire space, we also prefer to have a single function, say v, to generate all of
L*(R). But if the wavelet ¥ has very fast decay, how can it cover the whole
real line? The obvious way is to shift 1 along R.
Let ZZ denote the set of integers:

Z={..,-101,...}.
The simplest way for 4 to cover all of IR is to consider all the integral shifts of

1, namely:
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Next, as in the sinusoidal situation, we must also consider waves with differ-
ent frequencics. For various rcasons which will soon be clear to the reader,
we do not wish to consider “single-frequency” waves, but rather, waves with
frequencies partitioned into consccutive “octaves” (or frequency bands). For
computational efficiecncy, we will use integral powers of 2 for frequency parti-
tioning; that is, we now consider the small waves

Yv(z —k), jkeZ (1.1.8)

Observe that ¥(27z — k) is obtained from a single “wavelet” function ¥(z) by
a binary dilation (i.e. dilation by 27) and a dyadic translation (of k/27).

So, we are interested in “wavelet” functions 1 whose binary dilations and
dyadic translations are enough to represent all the functions in L?(R). For
simplicity, let us first consider an orthogonal basis generated by 1. Later in
this chapter {see Section 1.4), we will introduce the more general “wavelet
series”.

Throughout this book, we will use the following notations for the inner
product and norm for the space L?(R):

to)= [ " f(@)Ed; (1.1.9)

Nl = (f, Y3, (1.1.10)
where f,g € L2(R). Note that for any j, k € Z, we have
. oo A 1/2
152l = { [~ 172z - wras}
=272 flla.

Hence, if a function ¥ € L2(IR) has unit length, then all of the functions Yk
defined by

Yik(z) 1= 2Pz k), jkeZ, (1.1.11)
also have unit length; that is,
Mikllz = blla=1, s keZ. (1.1.12)
In this book, the Kronecker symbol
. J1 for j=k
bk 1= {o for S 2k (1.1.13)

defined on 7ZZ x 7Z, will be often used.

Definition 1.1. A function 3 € L*(R) is called an orthogonal wavelet {or o.n.

wavelet), if the family {1 x}, as defined in (1.1.11), is an orthonormal basis of
L*(IR); that is,

(Vi k, Yem) = 650 bk, sk, 6,me, (1.1.14)
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and every f € L*(IR) can be written as

00

f@)= ) cixvin(), (1.1.15)

jlk=-m
where the convergence of the series in (1.1.15) is in L*(R), namely:

Njy Ny

F= 3 Y ciwvin

lim
My Ny ,M3,N3—o0 oMy ke M,

= 0.
2

The simplest example of an orthogonal wavelet is the Haar function ¢y
defined by

1 for 0<z<i;
Yu(z) =4 -1 for j<z < (1.1.16)
0 otherwise.

We will give a brief discussion of this function in Sections 1.5 and 1.6. Other
o.n. wavelets will be studied in some details in Chapter 7.

The series representation of f in (1.1.15) is called a wavelet series. Anal-
ogous to the notion of Fourier coefficients in (1.1.2), the wavelet coefficients
¢jk are given by

ik = {f1¥ik)- (1.1.17)
That is, if we define an integral transform Wy, on L?(R) by
e (] % o0 z—b 2

(Wy£)(b,a) := |a] /: f(:x:)'zlz(—a—~)dz, f e L*(R), (1.1.18)

then the wavelet coefficients in (1.1.15) and (1.1.17) become

cik = (Wy f) (g, %) . (1.1.19)

The linear transformation Wy, is called the “integral wavelet transform” relative
to the “basic wavelet” . Hence, the (j, k)** wavelet coefficient of f is given
by the integral wavelet transformation of f evaluated at the dyadic position
b = k/2 with binary dilation a = 277, where the same o.n. wavelet ¥ is
used to generate the wavelet series (1.1.15) and to define the integral wavelet
transform (1.1.18).

The importance of the integral wavelet transform will be discussed in
the next section. Here, we only mention that this integral transform greatly
enhances the value of the (integral) Fourier transform F, defined by

(Fly) = / * e f(x)dz, f € L*(R). (1.1.20)

-00
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The mathematical trcatment of this transform will be delayed to the next chap-
ter. As is well known, the Fourier transform is the other important component
of Fourier analysis. Hence, it is interesting to note that while the two compo-
nents of Fourier analysis, namely: the Fourier series and the Fourier transform,
are basically unrelated; the two corresponding components of wavelet analysis,
namely: the wavelet series (1.1.15) and the integral wavelet transform (1.1.18),
have an intimate relationship as described by (1.1.19).

1.2. The integral wavelet transform and time-frequency analysis
The Fourier transform F defined in (1.1.20) not only is a very powerful
mathematical tool, but also has very significant physical interpretations in
applications. For instance, if a function f € L?(R) is considered as an analog
signal with finite energy, defined by its norm || f||2, then the Fourier transform

fw) = (FNHW) (1.2.1)

of f represents the spectrum of this signal. In signal analysis, analog signals
are defined in the time-domain, and the spectral information of these signals
is given in the frequency-domain. To facilitate our presentation, we will allow
negative frequencies for the time being. Hence, both the time- and frequency-
domains are the real line R. Analogous to the Parseval Identity for Fourier
series, the Parseval Identity that describes the relationship between functions
in L2(IR) and their Fourier transforms is given by

(o)== (Fd), frge PR, (1:22)

Here, the notation of inner product introduced in (1.1.9) is used, and as will
be seen in the next chapter, the Fourier transformation F takes LZ(IR) onto
itself. As a consequence of (1.2.2), we observe that the energy of an analog
signal is directly proportional to its spectral content; more precisely,

1Ml = =Wl f € LX) (123)
However, the formula
flw) = /m e f(t)dt (1.2.9)

of the Fourier transform alone is quite inadequate for most applications. In
the first place, to extract the spectral information f(w) from the analog signal
f(t) from this formula, it takes an infinite amount of time, using both past
and future information of the signal just to evaluate the spectrum at a single
frequency w. Besides, the formula (1.2.4) does not even reflect frequencies that
evolve with time. What is really needed is for one to be able to determine the
time intervals that yield the spectral information on any desirable range of
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frequencies (or frequency band). In addition, since the frequency of a signal is
directly proportional to the length of its cycle, it follows that for high-frequency
spectral information, the time-interval should be relatively small to give better
accuracy, and for low-frequency spectral information, the time-interval should
be relatively wide to give complete information. In other words, it is important
to have a flexible time-frequency window that automatically narrows at high
“center-frequency” and widens at low center-frequency. Fortunately, the inte-
gral wavelet transform Wy relative to some “basic wavelet” v, as introduced
in (1.1.18), has this so-called zoom-in and zoom-out capability.

To be more specific, both ¥ and its Fourier transform i must have suf-
ficiently fast decay so that they can be used as “window functions”. For an
L*(R) function w to qualify as a window function, it must be possible to
identify its “center” and “width”, which are defined as follows.

Definition 1.2. A nontrivial function w € L*(IR) is called & window function
if zw(z) is also in L2(IR). The center t* and radius A,, of a window function
w are defined to be

e [
o= g L swt)Pas (1:25)
and ) - i . 12

Ay = uTu‘{ / (o= ¢ ula) dz} , (1.26)

respectively; and the width of the window function w is defined by 2A,,.

We have not formally defined a “basic wavelet” ¥ yet and will not do so
until the next section. An example of a basic wavelet is any orthogonal wavelet
as already discussed in the previous section. In any case, we will see that any
basic wavelet window function must necessarily satisfy:

/:m Y(z)dz = 0, (1.2.7)

so that its graph is a small wave.
Suppose that 1 is any basic wavelet such that both ¥ and its Fourier trans-
form 9 are window functions with centers and radii given by t‘,w‘,A‘l,,A';,

respectively. Then in the first place, it is clear that the integral wavelet trans-
form

Wer)o0) = 1ol [~ s (152)a (1.29)

of an analog signal f, as introduced in (1.1.18), localizes the signal with a
“time window”

b+ at® —aly, b+at* +aly),
where the center of the window is at b + at* and the width is given by 2aAy.

This is called “time-localization” in signal analysis. On the other hand, if we
set

Nw) = P(w + w*), (1.2.9)
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then 7 is also a window function with center at 0 and radius given by A;;

and by the Parseval Identity (1.2.2), the integral wavelet transform in (1.2.8)
becomes

(Wof)(ba) = “';';* /_ Z Fw)en (a (w - %))du (1.2.10)

Hence, with the exception of multiplication by ala]~%/2x and a linear phase-
shift of e, determined by the amount of translation of the time-window,
the same quantity (W, f)(b, a) also gives localized information of the spectrum
f(w) of the signal f(t), with a “frequency window”

w* 1 w* 1
2 A~ Y 4 2Aa
[a v T te '/’]'

whose center is at w*/a and whose width is given by 2A$/a. This is called

“frequency-localization”. By equating the quantities (1.2.8) and (1.2.10), we
now have a “time-frequency window”:

. R wt 1 w* 1
[b+at* —aly, b+ at* +aly] x [—a— - ;A'?' - + ;A';] (1.2.11)

for time-frequency analysis using the integral wavelet transform relative to a
basic wavelet ¥ with the window conditions described above.

Several comments are in order. First, since we must eventually consider
positive frequencies, the basic wavelet 1 should be so chosen that the center
w"* of ¥ is a positive number. In practice, this positive number, along with
the positive scaling parameter a, is selected in such a way that w*/a is the
“center-frequency” of the “frequency band” [<- — 1A & < olia &;] of interest.
Then the ratio of the center-frequency to the width of the frequency band is
given by

wija _ w
- 3
2A ;E/ a 2A ‘7;

(1.2.12)

which is independent of the location of the center-frequency. This is called
“constant-Q" frequency analysis. The importance of the time-frequency win-
dow (1.2.11) is that it narrows for large center-frequency w*/a and widens for
small center-frequency w*/a (cf. Figure 1.2.1), although the area of the win-
dow is a constant, given by 4A,A o This is exactly what is most desirable in
time-frequency analysis. Details will be studied in Chapter 3.



