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Preface

During recent years applied mathematics techniques have attained considerable
dissemination within the experimental sciences and engineering. Special attention
has been devoted to biomathematics and medicine, including the analysis of math-
ematical models for the description of tumors, blood flux in arteries, the heart and
flow patterns inside an aneurysm dome. A significant element of this dissemination
also derives from the applications of mathematics in industry. International meetings
such as those of the European Consortium for Mathematics in Industry (ECMI)
and the International Council for Industrial and Applied Mathematics (ICIAM) bear
witness to these advances. In Spain, various research groups have contributed to this
development; most have been based in universities across the country, sometimes
acting in collaboration with nonpublic laboratories. Links and coordination with
foreign groups and universities have also proved essential. The significance of the
Spanish contribution is reflected in the fact that the next ECMI meeting will take
place in Santiago de Compostela in June 2016, while Valencia will host the next
ICIAM congress in 2019.

The XXIVth Congress on Differential Equations and Applications/XIVth
Congress on Applied Mathematics was held in Céadiz (a city founded more than
three millennia ago), Spain, from 8 to 12 June 2015. This biennial international
conference is the most important event organized by the Spanish Society of Applied
Mathematics (SEMA). Any information on the conference is available on the
Society website: http://www.sema.org.es/web/index.php. The conference brought
together an excellent group of international and national researchers interested
in the different branches of applied mathematics. Topics ranged from tsunami
prediction to modeling of epidemiological processes and encompassed mathematics
in architecture, high-order long-term integration of dynamical systems, the search
for exact solutions of ordinary differential equations, oceanography, numerical
acoustics, mathematics in industry, numerical linear algebra, and so on. This wide
variety of subject matter reflects the multidisciplinary nature of the various research
projects being carried out at present by both Spanish teams and groups in other
countries



vi Preface

The collection of articles in this book represents a selection of the contributions
presented at this conference in Cadiz. Every submitted paper has undergone a
standard refereeing process. The volume provides a good summary of the recent
activity of the various Spanish research groups interested in the applications of
mathematics to different branches of the experimental sciences and engineering.

The publication has been made possible by the contributions of a number of
people. First of all, we would like to thank the authors themselves for submitting
their work. Special thanks are due to the referees who agreed to participate: their
comments and suggestions have resulted in improvements in most of the included
contributions. Finally, we would like to express our gratitude to Francesca Bonadei
from Springer for the patience, attention and support that she has shown at every
stage of the editorial process.

Puerto Real, Spain Francisco Ortegén Gallego
Puerto Real, Spain Maria Victoria Redondo Neble
Puerto Real, Spain José Rafael Rodriguez Galvan

February 2016
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Approximate Osher-Solomon Schemes
for Hyperbolic Systems

M.J. Castro, J.M. Gallardo, and A. Marquina

Abstract The Osher-Solomon scheme is a classical Riemann solver which enjoys a
number of interesting features: it is nonlinear, complete, robust, entropy-satisfying,
smooth, etc. However, its practical implementation is rather cumbersome, compu-
tationally expensive, and applicable only to certain systems (compressible Euler
equations for ideal gases or shallow water equations, for example). In this work, a
new class of approximate Osher-Solomon schemes for the numerical approximation
of general conservative and nonconservative hyperbolic systems is proposed. They
are based on viscosity matrices obtained by polynomial or rational approximations
to the Jacobian of the flux evaluated at some average states, and only require a bound
on the maximal characteristic speeds. These methods are easy to implement and
applicable to general hyperbolic systems, while at the same time they maintain the
good properties of the original Osher-Solomon solver. The numerical tests indicate
that the schemes are robust, running stable and accurate with a satisfactory time step
restriction, and the computational cost is very advantageous with respect to schemes
using a complete spectral decomposition of the Jacobians.

1 Introduction

The Osher-Solomon scheme, introduced in [12], is a nonlinear and complete
Riemann solver enjoying a number of interesting features: it is robust, entropy-
satisfying, smooth, and has a good behavior with slowly-moving shocks. Its main
drawback is that it requires the computation of a path-dependent integral in phase
space, leading to a very complex and computationally expensive Riemann solver.
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2 M.J. Castro et al.

Due to this difficulties, its practical application has been restricted to certain
systems, e.g., the compressible Euler equations [15].

In [7], Dumbser and Toro introduced a reformulated version of the Osher-
Solomon solver, denoted as DOT (Dumbser-Osher-Toro), in which the integrals
in phase space are numerically approximated by means of a Gauss-Legendre
quadrature formula. This leads to a scheme much simpler than the original one and
applicable to general hyperbolic systems. In particular, the viscosity matrix of the
numerical flux is defined as a linear combination of the absolute value matrix of
the physical flux evaluated at certain quadrature points. The computation of these
absolute value matrices requires the knowledge of the complete eigenstructure of the
system. Thus, the scheme may be computationally expensive for systems in which
the eigenstructure is not known or difficult to compute.

In this work we propose an alternative version of the DOT solver, in which the
absolute value matrices are approximated using appropriate functional evaluations
of the Jacobian of the flux evaluated at the quadrature points. These schemes
only require a bound on the maximum speed of propagation, thus avoiding the
computation of the full eigenstructure of the system. Several families of approxi-
mations have been considered. The first one is based on Chebyshev polynomials,
which provide optimal uniform approximations to the absolute value function.
On the other hand, it is well-known that rational functions provide more precise
approximations to |x| than polynomial functions. For this reason, two different
families of rational approximations have also been used, based on Newman [10]
and Halley [4] functions. This families of functions have also been considered in
the recently introduced RVM schemes (see [6]).

The proposed approximate Osher-Solomon schemes have been applied to a
number of initial value Riemann problems for ideal magnetohydrodynamics, to
observe their behavior with respect to some challenging scenarios in numerical
simulations. The numerical tests indicate that our schemes are robust, stable and
accurate with a satisfactory time step restriction. Comparisons with the DOT solver
and some other well-known schemes in the literature (e.g., Roe and HLL) have also
been performed.

2 Preliminaries

Consider a hyperbolic system of conservation laws
ow + 0, F(w) =0, ()

where w(x, 1) takes values on an open convex set 2 C RY and F: 2 — RV is
a smooth flux function. We are interested in the numerical solution of the Cauchy
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problem for (1) by means of finite volume methods of the form
At
+1
with = w — E(Fiﬂ/z—ﬂ—l/z), )

where w/ denotes the approximation to the average of the exact solution at the cell
I; = [xi—1/2,%i4+1/2] at time ' = nAt (the dependence on time will be dropped
unless necessary). We assume that the numerical flux is given by

F; + Fiq
Fiy12 = -'—21— = '2‘Q1'+l/2(wi+l — W), 3)
where F; = F(w;) and Q;+1/> denotes the numerical viscosity matrix, which

determines the numerical diffusion of the scheme.
The condition of hyperbolicity of system (1) states that the Jacobian matrix of
the flux at each state w € §2,

A(w) = %(W),

can be diagonalized as A = PDP~', where D = diag(,,...,Ay), A; being the
eigenvalues of A, and the matrix P is composed by the associated right eigenvalues
of A. As it is usual, we denote the positive and negative parts of A, respectively,
as A¥ = PD*P~! and A~ = PD P!, where D* = diag(Af,...,A¥), with
}L+ = max(A;,0) and A;” = min(;,0). It is clear that A = AT + A~. On the other
hand the absolute value of A is defined as |A| = At —A".

It is interesting to note that the well-known Roe’s method [13] can be written
in the form (3) with viscosity matrix Q;y12 = |Ai4+1/2|, where A;41/2 is a Roe
matrix for the system. Several numerical methods have been developed by using
approximations to |A;+1/2| as viscosity matrices. A general approach to build such
kind of approximations by means of polynomial and rational functions has recently
been introduced in [5, 6]. In particular, it has been shown that a number of well-
known schemes in the literature can be viewed as particular cases within this general
framework: Roe, Lax-Friedrichs, Rusanov, HLL, FORCE, and many others.

3 The Osher-Solomon Scheme

The Osher-Solomon scheme [12] is a nonlinear Riemann solver that possesses
a number of interesting features: it is entropy-satisfying, robust, differentiable
and good behaved for slowly-moving shocks. On the contrary, its implementation
is rather cumbersome, computationally expensive, and only applicable to certain
systems.



4 M.J. Castro et al.

Let A(w) be the Jacobian of F evaluated at w, and assume the flux splitting
F(w) = Ft(w) + F~(w), 4)
where

AT (w) = E)E)F—i(w).
w

The classical Osher-Solomon numerical flux is then defined as
Fix12 = Ft(w) + F~(Wit1).
Let now @ be a path in the phase-space £2 linking the states w; and w41, i.e.,

@:[0,1] — $£2 is a Lipschitz continuous function such that @(0) = w; and ®(1) =
wi+1. Then, we can write

1
(o) = FOw) = fo A= (@(5) ' (s)ds.
from which we deduce
1
Fiisa 5= Fy / A™(@(s))®' (s)ds. )
0

Similarly, we could also write

1
Fit1/2 = Fiyy —/0 AT (®(5) P/ (s)ds. (6)

Combining (5) and (6), the Osher-Solomon flux can be written as

Fi+Fih 1

Fiyi2 = =
+1/2 2 2

1
fo |A(@(s))| @' (s)ds. (7)

The e;(pression (7) for the numerical flux depends on the path @ in phase-space,
so in general it may be difficult to compute. Osher and Solomon [12] proposed a
way to build, under certain assumptions, a path which makes possible to perform the
integration. Unfortunately, the resulting solver is rather complex, computationally
expensive, and only applicable to certain systems.

In [7] the authors propose a way to circumvent the drawbacks of the Osher-
Solomon solver, maintaining at the same time its good features. First, the path
consisting in segments is chosen:

D(s) = w; + s(wip1 —wy), s€[0,1].
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Thus (7) can be written in the form (3), with viscosity matrix

1
Qit1/2 = f |A(Wi + s(Wit1 — Wf))lds-
0

To avoid the analytical integration, the integral is evaluated numerically using a
Gauss-Legendre quadrature formula. The resulting numerical flux, denoted as DOT
(Dumbser-Osher-Toro), has the form (3) with viscosity matrix given by

g
Qi+1/2 = Zwk]A(Wr‘ + se(Wit1 —wi)|, (3)
=1

where s; € [0, 1] and w; are the weights of the quadrature formula. The resulting
scheme is simple to implement and applicable to general hyperbolic systems. On the
other hand, it needs the full eigenstructure of the system, which must be computed
numerically when it is not known or difficult to calculate.

4 Approximate Osher-Solomon Schemes

With the aim of simplifying the computation of the DOT numerical viscosity
matrix (8), it would be desiderable to approximate the intermediate matrices

IA(W;+Sk(W,'+1—'W,'))I. k= ]....,q,
in a simple and efficient way. Two approaches will be considered in this section, one
based on Chebyshev polynomials and another relying on rational approximations.
Let P(x) be a polynomial approximation to the absolute value function |x| in the
interval [—1, 1], satisfying the stability condition [5]

x| <P(x) <1, Vxel-11]. ©)

For a given matrix A, if An,y is the eigenvalue of A with maximum absolute value
(or an upper bound of it), |A| can be approximated as

A| 2 |Amax|P(|Amax| "' A).
Denote

A,(-i)l/z = A(Wi I Sk(wi+l -w), k=1,..., q,

where A is the Jacobian matrix of F, and let Aff,_) 1/2,max be the eigenvalue of Afi)l /2
with maximum absolute value. Then, the polynomial approximate Osher-Solomon
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flux is given by (3) with viscosity matrix

q
Qit1/2 = Zkaf-i)l/z, (10)
k=1
where
B _ 3k ) =1, (k)
Pivip = ]Ai+1/24max]P(|Ai+l/2.max| Ai+l/2)‘ (1n

Remark I The advantage of formula (10) with respect to (8) is that in the latter it is
necessary to compute the full eigenstructure of the system, while in the former only
an upper bound on the spectral radius is needed.

Notice that the closer the polynomial P(x) is to |x| in the uniform norm, the
more similar the approximate flux (10) will be to the Osher-Solomon flux (8).
This suggests to use accurate polynomial approximations to |x| for building (10).
In particular, Chebyshev approximations will be considered in the numerical
experiments. Specifically, for a given p > 1 we take P(x) = 12,(x), where

. 2 4& (=1)/*!
Top(x) = - + = ; G -D+ l)Tz,(x). xe[-1,1],
T»j(x) being the Chebyshev polynomials. As it is well-known, the order of approx-
imation of 75, (x) to |x| is optimal in the L°>°(—1, 1) norm. Moreover, the recursive
definition of the polynomials 7 (x) provides an explicit and efficient way to
compute 7,(x).

As it is well-known, the order of approximation to |x| can be greatly improved by
using rational functions instead of polynomials. This suggests to consider rational
approximate Osher-Solomon fluxes of the form (3) with viscosity matrix

q
=k
Qi+1/2 = Zka,(.,_)l/z- (12)
k=1

where Efi), , is defined as in (11), but taking as basis function a rational approxi-
mation R(x) to |x| satisfying the stability condition (9). Following [6], two different
families of rational functions will be considered:

* Given a set of r > 4 distinct points X = {0 < x; < -+ < x, < 1}, construct the
polynomial

p) = [ & +x0).
k=1
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Fig. 1 Lefr: Chebyshev t4(x) and Halley H,(x) and H,(x) functions. Right: Newman R4(x) and
Halley H;(x) functions. Notice the different scaling in both figures

The Newman rational function [10] associated to X is defined as

_ P& —p(=x)
B = @ T

The rate of approximation of R,(x) to |x| depends on the choice of nodes X:
several possibilities can be found in the literature. Here, we will take x; =
exp(—kr~'/2), which provides an exponential rate of approximation [10].

* The Halley rational functions H,(x) are recursively defined as [6]

H,(x)? + 3x?

m. Hy(x) = 1.

Hoy1(x) = Hy(x)

It can be proved that |H, (x) — |x|||ec = 37".

Figure 1 shows a comparison between the Chebyshev 74(x), Newman R4(x), and
Halley H,(x) (r = 1, 2, 3) functions.

Both the Chebyshev polynomials 75, (x) and the Newman functions R,(x) do not
satisfy the stability condition (9) strictly, although this can be easily fixed with a
slight modification: see [6] for details. However, in practical computations there
are no appreciable differences between both approaches. On the other hand, Halley
functions H,(x) satisfy (9) by construction. As long as the functions considered do
not cross the origin, no entropy-fix is needed in the presence of sonic points.

5 Application to Ideal Magnetohydrodynamics

In this section we apply the approximate Osher-Solomon schemes introduced
previously to solve some challenging problems related to the ideal magnetohydro-
dynamics equations.



