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PREFACE

It is the aim of this book to introduce college students in chemistry and
biology to the concepts of catalysis, that is, how a reaction rate is
accelerated. The catalysts vary from the very simple proton to the
very complex enzymes and heterogeneous catalysts, both containing
thousands of atoms.

The enzymes are biocatalysts; that is, they catalyze most of the
body’s functions. Heterogeneous catalysts are usually solid materials
that are commercially very important. These catalysts are responsible
for about 100 billion dollars worth of products annually in our
economy.

In bLetween these two extremes are catalysis by bases, such us
hydroxide ions, general (undissociated) acids, general bases (usually
organic compounds), metal ions, organic nucleophiles and electro-
philes, as well as more complicated forms of catalysis, such as multiple
catalysis, intramolecular catalysis, and intracomplex catalysis. Metal
ions can act as catalysts by serving as superacigds (protons of magnified
charge in neutral solution), by acting as electron transfer agents, or by
acting as templates on which reactions occur. Catalysis by nucleophiles
and electrophiles includes a discussion of two important vitamins,
thiamine pyrophosphate (B;) and pyridoxal phosphate (Bg). Multiple
catalysis, as the name implies, propounds that if a little is good, a lot is
better. Intramolecular catalysis has demonstrated some important
models of complex systems in which the catalyst is tied down in the
same molecule as the bond to be broken. Intracomplex catalysis is

/‘

closer to enzyme catalysis because in this instance, a noncovalent-— .

complexing is a necessary prerequisite for the subsequent catalytic steps.

Enzymic catalysis, including the structure, kinetics, and inhibition
of enzymes, is discussed: Like intracomplex catalysis, an enzyme forms
a noncovalent complex with the molecule it is acting on, called the
substrate. Enzymes are usually protein in nature, being polymeric



xiv PREFACE

materials composed of amino acid monomers. But sometimes small co-
factors, either organic or inorganic, are needed for enzyme action. These
substances, called coenzymes, can range from complex metal ions such
as vitamin B, to the vitamins mentioned above (B; and Bg). Catalysis
by two enzymes, chymotrypsin and lysozyme, is described in some de-
tail, including how the fit between the enzyme and the substrate is
important. The factors by which enzymes achieve their catalytic
efficiency and specificity are also emphasized.

Other books in this series emphasize the geometry of molecules,
organic reaction miechanisms, macromolecules, etc. This book attempts
to build on the other members of this series.
' MYRON L. BENDER
LEWIS J. BRUBACHER
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ONE
INTRODUCTION

In order to understand how catalysts function, we must first under-
stand what happens to the atoms in a molecule during a typical
chemical reaction.

11 THE ANATOMY OF A CHEMICAL REACTION

As an example of a typical chemical reaction we shall consider the
hydrolysis of methyl iodide in water solution to give methyl alcohol.
The equation for this reaction, as written in Eq. (1-1), tells us nothing
about what happens to the individual atoms during the course of a
reaction between one molecule of methyl iodide and one molecule of
water.

CH;31 + H,O —— CH3;0H + HI (1-1)
Methyl Water Methyl Hydrogen
iodide alcohol iodide

Equation (1-2) illustrates what happens more tlearly. In general a
chemical reaction involves the breaking of old bonds and the making of
new bonds, which may take place in several steps. The reaction in Eq.
(1-1) is relatively simiple. It occurs in a single step, as shown in Eq.
(1-2). The intermediate stage in which two bonds are breaking while
another is forming is called the tramsition state. We shall define this
term more precisely later in this chapter.

H
H \ H H
H Hy Hy
H’o + H I 0 -1 H'+ 0 H+ T
e
H I H

Initial state Transition state Final state

(1-2)
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Let us center our attention on the methyl iodide molecule in
Eq. (1-2). The carbon atom is represented by a circle, and four
atoms are bonded to it in a tetrahedral arrangement, as indicated
by the drawing in the initial state. When a water molecule
approaches the methyl iodide molecule from its backside (relative
to the iodine atom substituent) with sufficient energy, a new bond
begins to form as indicated in the drawing labeled “transition
state.” Simultaneously, the bond between the iodine atom and the
cartbon atom weakens. In the transition state the carbon atom of
methyl iodide has three more or less normal bonds (io the three
hydrogen atoms) and two partial bonds, the bond to the iodine
atom which is breaking, and the bond to the oxygen atom which is
forming. Although the total system is electrically neutral, the iodine
atom is beginning to acquire a partial negative charge and the
hydrogen atom of the water molecule a partial positive charge.
When the oxygen-carbon bond is completely formed and the
carbon-iodine bond is completely broken, the final state is reached
and the reaction is complete. )

In one aspect Eq. (1-2) is incomplete. The H" ion is not a free
species but is covalently bonded to a water molecule as an
hydronium ion, H;O". That is, the proton is transferred from the
forming methyl aicohol molecule to a neighboring H,O molecule.
Such a proton transfer reaction occurs very readily and may be
viewed as occurring almost simultaneously with the breaking and
forming of the two bonds involving the central carbon atom in Eq.
(1-2).

The way Eq. (1-2) is written establishes a convention that will be
used in this book. The transition-state representation is shown in large
brackets within the arrow. This is to emphasize that the transition state
is not an intermediate compound, but is a structure through which the
reactant(s) pass in the 107 s or so that it takes to go from the initial
state to the final state.

The description in this section of the course of events during a
chemical reaction is called the mechanism of the reaction (see O. T.
Benfey in this series). A study of the kinetics of a reaction is a study of
the rate at which the reaction occurs, i.e., the number of molecules of
methyl iodide that react per second under various conditions of
temperature, solvent, etc.
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1-2 THE ENERGY REQUIREMENTS OF A CHEMICAL
REACTION

1t takes energy to break a chemical bond such as the carbon-iodine bond
in Eq. (1-2). Conversely, energy is released when a bond, such as the
carbon-oxygen bond in Eq. (1-2), is formed. In the initial stages of the
reaction in Eq.(1-2), the energy being released by the forming bond is not
sufficient to begin to break the carbon-iodine bond. Additional energy is
required, and it comes from the kinetic energy of the two molecules.
Thus, if a reaction is to occur, the water and methyl iodide molecules
must collide with sufficient force to provide the additional energy. In this
particular reaction, the additional energy requirerment, or energy barrier,
is rather large. Consequently, only a very small fraction of all collisions
involve sufficient kinetic energy for the reaction to occur and the reaction
rate is low. At 25°C it takes 108 d for half the methyl iodide molecules
to react. This is the half-life of the reaction. Raising the temperature of"
the solution increases the number of sufficiently energetic collisions
which occur per second. At 50°C the reaction rate is 35 times faster
than at 25°C; the half-life of the reaction is only 3.1 d.

The energy requirements for the reaction of a single mo'~cule
according to Eq. (1-2) may be represented graphically as in Fig. 1-1.
Energy is plotted along the ordinate; the abscissa, labeled “reaction
coordinate,” represents the extent of reaction. Thus the curve in Fig,
1-1 shows schematically the minimum energy required by a molecule of
water plus a molecule of methyl iodide as they go from the initial state
to the transition state and on to the final state. The point of maximum
energy on this curve corresponds to the transition state. For con-
venience we have assigned zero energy to the initial state; since the final
state is at lower energy, a small amount of energy is actually released in
the course of the reaction. Our immediate interest, however, is in the
energy barrier to reaction, 4.52 X 1072% cal per molecule of methyl
iodide or 27.18 kcal mol ™', which is the difference between the energy
of the transition state and the energy of the initial state. This energy
difference is referred to as the free energy of activation AG* . 1t is one
of the few aspects of Fig. 1-1 which can be quantitatively determined.
Diagrams like Fig. 1-1 are only schematic representations. The extent of
reaction of a single molecule (i.e., the abscissa) is not a directly
measurable quantity. 1t does not correspond directly to the dimensions
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of either space or time; however there is a qualitative relation between
the extent of reaction and the distance between the carbon and iodine
atoms. We can say with simple certainty that for a given pair of
reactants there is an initial state where the extent of reaction is 0
percent, and a final state where the extent is 100 percent, and that in
going from the former to the latter, a molecule requires a certain
minimum energy input AG i,

The free energy of activation is composed of two types of energy
according to Eq. (1-3), where AH? s the enthalpy of activation, 7 is
the absolute temperature (in degrees Kelvin), and AS¥ is the entropy of
activation.

AG* = AHF - T AS* (1-3)
Enthalpy is simply heat energy, the manifestation of molecular motion.
At 25°C, AH% is 27.37 keal mol ™" for the hydrolysis of methyl iodide.

Entropy is a quantity that is difficult to visualize but may be
thought of as a measure of disorder or randomness of orientation in a
system. As a system becomes more disordered, its entropy increases.
Conversely, as a system becomes more ordered, the entropy decreases.
At 25°C, AS* for the hydrolysis of methyl iodide is +0.62 cal deg™"
mol ™" ; at 50°C it is -3.94 cal deg™ mol~". A brief rationalization of

Transition state

Free energy

0 ~
| Initial state

G?

_ Final state

Reaction coordinate

FIGURE 1-1 Free-energy diagram for the hydrolysis of methy! iodide at 25°C.
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why AS* decreases as temperature increases will give the reader some
feeling for the concept of entropy as a measure of disorder.

The methyl iodide reactant molecule is always surrounded by a
changing layer of water molecules, one of which will eventually become
a reactant. This layer is the solvent shell. In the process of going from
the initial state to the transition state we must ask what happens to this
solvent shell as well as what happens to the reactants themselves. In
other words, AS¥ (and AH %, too, for that matter) has two com-
ponents, A‘S';‘:olvent shett and Asl:-teactants [Egs. (14) to (1-6)].

it = £ i
AS* = ASgoivent shett t ASteactants (1-4)

ASE vent sheit = (entropy of solvent shell in transition state)

— (entropy of solvent shell in initial state) (1-5)

AS}actants = (entropy of reactants in transition state)

— (entropy of reactants in initial state) (1-6)

According to one theory now in favor, the solvent shell has a Certain
degree of order in the initial state, perhaps similar to the ordering of
water molecules in ice; in the transition state, this order breaks down
somewhat (entropy increases). Therefore, ASZ i entsnen 15 always
positive. On the other hand, the two reactants must be lined up in just
the right way in the transition state (high order, low entropy) but may
have any orientation in the initial state (high disorder, high entropy).
Therefore, AS,e,,ctams is always negative. Since AS¥ is slightly positive
experimentally at 25°C, ASE ent shen must have just a slightly greater
magnitude than AS,ieacmms

Now increasing the molecular motion in the system (by raising the
temperature) will increase the disorder (entropy) of the solvent shell in
the initial state more than in the transition state, which has less order to
start with. Thus ASE | cn:snen Will decrease in magnitude as the
temperature is raised. On the other hand, AS%,ctants should, if
anything, also become more negative as the temperature is raised. Thus
AS* should become more negative as the temperature is increased. This
is indeed what is observed. Consequently, the idea that entropy is a
measure of disorder is a reasonable one.

In summary, we have described some aspects of the mechanism of
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the hydrolysis of methyl iodide. The course of events in bond-making
and bond-breaking is illustrated by Eq. (1-2). Quantitatively 27.18 kcal
of energy is required on the average to take 1 mol of methyl iodide
molecules from the initial state to the transition state at 25°C. A little
more than this amount of energy is released, however, in going from the
transition state to the final state, so that the net result of this reaction
is the release of some free energy. The rate of a reaction at a given
temperature is determined by AG*. The larger AG* is, the fewer
collisions per second there are that will have sufficient energy to attain
the transition state, and the slower the reaction.

1-3 THE BASIS OF CATALYSIS

In 1902 the German chemist Ostwald gave the first adequate definition
of a catalyst: “a substance which alters the velocity (rate) of a chemical
reaction without appearing in the end product.” According to this
definition a catalyst may either increase or decrease the velocity of a
chemical reaction. However, in current ‘usage, a catalyst is a substance
which increases the reaction velocity;-a substance which decreases the
rate of a reaction is called an inhibitor. Ostwald’s definition also implies
that a catalyst is not consumed during the course of the reaction it
catalyzes, but serves repeatedly to assist molecules to react. There are
other substances which may also properly be called catalysts, but which
are consumed in the reactjons they catalyze. In biochemistry this is true
of many coenzymes. However, these coenzymes are often restored to
their original form by a subsequent reaction, so that in the larger
context the coenzyme is unchanged. A typical example is the coenzyme
nicotinamide adenine dinucleotide which is chemically reduced during
reactions it helps to catalyze. The reduced form is oxidized back to its
initial form in a subsequent reaction. In later chapters we shall meet
many other coenzymes.

A catalyst increases the velocity of a reaction’by increasing the
number of conversions of reactant molecules to product molecules that
occur each second. In order to do this the catalyst must in some way
reduce AG¥ for the reaction it catalyzes.

Most commonly the catalyst performs this function by providing a
different pathway for the reaction, which will usually have more steps
than the uncatalyzed pathway. An essential feature of the catalyzed
pathway is that all AG ¥ values are smaller than the largest AG?* value
of the uncatalyzed pathway.



