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Preface to the Revised Edition

The first edition of this book was printed by Prentice-Hall, Inc., in 1962, and
the book went out of print some years later. I then agreed to prepare a revised
version of this book for the Springer Series in Computational Mathematics.

One of the many reasons it has taken so long to prepare this revision is
that numerical analysis has very much matured since 1962, into a highly di-
verse field, and it was difficult to decide just what could be easily added. For
example, even a modest treatment of finite elements, with Sobolev norms,
etc., was questionable, particularly when new books, devoted solely to this
theme, had subsequently appeared in print. This was also the case for multi-
grid methods, Krylov subspace methods, preconditioning methods, and in-
complete factorization methods. In the end, only a few items were added,
items which required little additional background on the part of the reader.
These new items include ovals of Cassini, a semi-iterative analysis of SOR
methods, H-matrices and weak regular splittings, ultrametric matrices, and
matrix rational approximations to exp(~z). New references and new exercises
have been added in a rather selective way, misprints have been corrected, and
numerous minor improvements and additions have been made.

Finally, I wish to thank many unnamed colleagues and friends, who en-
couraged me to finish this revision, and in particular, I thank Apostolos Had-
jidimos and Daniel Szyld for their comments and suggestions on this revision.
Also, I thank the Mathematics Office, at Spring-Verlag Heidelberg, for their
constant and untiring support in this effort, and lastly, Mrs. Joyce Fuell, of
the Institute for Computational Mathematics at Kent State University, for
her careful typing of the entire manuscript.

Kent State University, July 1999. Richard S. Varga
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1. Matrix Properties and Concepts

1.1 Introduction

The title of this book, Matriz Iterative Analysis, suggests that we might
consider here all matrix numerical methods which are iterative in nature.
However, such an ambitious goal is in fact replaced by the more practical one
where we seek to consider in some detail that smaller branch of numerical
analysis concerned with the efficient solution, by means of iteration, of matrix
equations arising from discrete approximations to partial differential equa-
tions. These matrix equations are generally characterized by the property
that the associated square matrixes are sparse, i.e., a large percentage of the
entries of these matrices are zero. Furthermore, the nonzero entries of these
matrices occur in some natural pattern, which, relative to a digital computer,
permits even very large-order matrices to be efficiently stored. Cyclic iterative
methods are ideally suited for such matrix equations, since each step requires
relatively little digital computer storage or arithmetic computation. As an
example of the magnitude of problems that have been successfully solved on
digital computers by cyclic iterative methods, the Bettis Atomic Power Lab-
oratory of the Westinghouse Electric Corporation had in daily use in 1960 a
two-dimensional program which would treat, as a special case, Laplacian-type
matrix equations of order 20,000.

The idea of solving large systems of linear equations by iterative methods
is certainly not new, dating back at least to Gauss (1823). Later, Southwell
(1946) and his school gave real impetus to the use of iterative methods when
they systematically considered the numerical solution of practical physics and
engineering problems. The iterative relazation method advocated by South-
well, a nroncyclic iterative method, was successfully used for many years by
those who used either pencil and paper or desk calculators to carry out the
necessary arithmetical steps, and this method was especially effective when
human insight guided the entire course of the computations. With the advent
of large-scale digital computers, this human insight was generally difficult to
incorporate efficiently into computer programs. Accordingly, mathematicians
began to look for ways of accelerating the convergence of basic cyclic or sys-
tematic iterative methods, methods which when initially prescribed are not
to be altered in the course of solving matrix equations—in direct contrast
with the noncyclic methods. We will concern ourselves here only with cyclic
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iterative methods (which for brevity we call iterative methods); the theory
and applications of noncyclic iterative methods have been quite adequately
covered elsewhere,! and these latter iterative methods generally are not used
on large digital computers.

The basis for much of the present activity in this area of numerical anal-
ysis concerned with cyclic iterative methods is a series of papers by Frankel
(1950), Geiringer (1949), Reich (1949), Stein and Rosenberg (1948), and
Young (1950), all of which appeared when digital computers were emerg-
ing with revolutionary force. Because of the great impact of these papers on
the stream of current research in this area, we have found it convenient to
define modern matrix iterative analysis as having begun in about 1948 with
the work of the above-mentioned authors. Starting at this point, our first aim
is to describe the basic results of modern matrix iterative analysis from its
beginning to the present.

We have presupposed here a basic knowledge of matrix and linear algebra
theory, material which is thoroughly covered in the outstanding books by
Birkhoff and MacLane (1953), Faddeev and Faddeeva (1963), and Beliman
(1960). Thus, the reader is assumed to know, for example, what the Jordan
normal form of a square complex matrix is.

Except for several isolated topics, which can be read independently,
our second aim is to have the material here reasonably self-contained and
complete. As we shall see, our development of matrix iterative analysis
depends fundamentally on the early research of Perron (1907), Frobenius
(1908), Frobenius (1909), and Frobenius (1912) on matrices with nonnega-
tive entries; thus, our first aim is not only to describe the basic results in this
field, but also to use the Perron-Frobenius theory of nonnegative matrices as
a foundation for the exposition of these results. With the goal of having the
material self-contained, we have devoted Chap. 2 to the Perron-Frobenius
theory, although recently an excellent book by Gantmakher (1959) has also
devoted a chapter to this topic.

Our third aim is to present sufficient numerical detail for those who are ul-
timately interested in the practical applications of the theory to the numerical
solution of partial differential equations. To this end, included in Appendices
A and B are illustrative examples which show the transition through the
stages from problem formulation, derivation of matrix equations, application
of various iterative methods, to the final examination of numerical results,
typical of digital computer output. Those interested in actual numerical appli-
cations are strongly urged to carry through in detail the examples presented
in these Appendices. We have also included exercises for the reader in each
chapter; these not only test the mastery of the material of the chapter, but in
many cases allow us to indicate interesting theoretical results and extensions

! References are given in the Bibliography and Discussion at the end of this chap-
ter.
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which have not been covered in the text. Starred exercises may require more
effort on the part of the reader.

The material in this book is so organized that the general derivation
of matrix equations (Chap. 6) from self-adjoint elliptic partial differential
equations is not discussed until a large body of theory has been presented.
The unsuspecting reader may feel he has been purposely burdened with a
great number of “unessential” (from the numerical point of view) theorems
and lemmas before any applications have appeared. In order to ease this
burden, and to give motivation to this theory, in the next section we shall
consider an especially simple example arising from the numerical solution
of the Dirichlet problem showing how nonnegative matrices occur naturally.
Finally, the remainder of Chap. 1 deals with some fundamental concepts and
results of matrix numerical analysis.

There are several important associated topics which for reasons of space
are only briefly mentioned. The analysis of the effect of rounding errors and
the question of convergence of the discrete solution of a system of linear
equations to the continuous solution of the related partial differential equa-
tion as the mesh size tends to zero in general require mathematical tools
which are quite different from those used in the matrix analysis of iterative
methods. We have listed important references for these topics, by sections,
in the Bibliography and Discussion for this chapter.

1.2 A Simple Example

We now consider the numerical solution of the Dirichlet problem for the unit
square, i.e., we seek approximations to the function u(z,y), defined in the
closed unit square, which satisfies Laplace’s equation

0%u(z,y) | 8%u(z,y)
1.
(1.1) 0z2 + oy
in the interior of the unit square. If I" denotes the boundary of the square,

then in addition to the differential equation of (1.1), u(z,y) is to satisfy the
Dirichlet boundary condition

= ul'l(xsy) +“yy(za y) = 0)0 < $7y < la

(1.2) uw(z,y) = g(z,y), (z,y) €,

where g(z,y) is some specified function defined on I". We now impose a uni-
form square mesh of side h = % on this unit square, and we number the
interior and boundary intersections (mesh points) of the horizontal and ver-
tical line segments by means of appropriate subscripts, as shown in Fig. 1.1.
Instead of attempting to find the function u(z,y) satisfying (1.1) for all
0 < z,y <1 and the boundary condition of (1.2), we seek only approxi-

mations to this function u(z,y) at just the interior mesh points of the unit
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square. Although there are a number of different ways (Chap. 6) of finding
such approximations of u(z, ), one simple procedure begins by expanding the
function u(z,y) in a Taylor’s series in two variables. Assuming that u(z,y)
is sufficiently differentiable, then

2
(13) u(zo % b, y0) = u(Zo, yo) +huz(z0,30) + h?“z‘z(xo,yo)
i%\‘uzz:(-ﬁ)yyﬁ) + %uzzzz(iﬂmy{)) R

2
(1.4) u(Zo, %0 £ h) = u(zo, o) ﬁ:h:zy(zo,yo) + %’uy‘y(zo, %)
ibé!’“yvu(xoyyo) + %!‘“wyy(-’l?o,yo) +...,

where the point x¢, yo and its four neighboring points (z¢ + h, yo), (o, Yo £ h)
are points of the closed unit square. We find then that

fg{’u(zo + ha yO) +’U,($0 - h'yyO) + 'u($0, Yo + h)
+u(zo, Yo — h) — 4u(zo,%0)}
= {:-lfzz(xO; Yo) + uyy(Zo, ¥0)}
+"1L2{“z:xx(-’toxyo) + Uyyyy(Zo, vo)} + -

From (1.1), the first term of the right side of (1.5) is zero, and if we neglect
terms with coefficients A2 or higher, we have approximately

(1.5)

u(zo,y0) = 3{u(zo + A, y0) +u(zo — h,yo)

(1.6) +u(zo,yo + h) + u(zo, yo — h)}.
If we let
Uy =u(‘§','§)) U2 :u(%)%)r ug = u(%’%)’ and
U4 1= u(g, 5),
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and if similarly go is the value of the specified function g(z,y) at the origin
z =y = 0, etc., we now define respectively approximations w; for the values
u;,1 < i < 4, by means of (1.6):

wy = %(u)3+ wq + g1 + gu1),

wy = }(wa+wa + g5 + g7),
(1.7)
w3 = %(wﬁ- wy + g2 + 94),

wy = F(wi1+ w2 + g8 + g10),

which are then four linear equations in the four unknowns w;, each equation
representing the approximate value of the unknown function u(z,y) at an
interior mesh point as an average of the approximate values of u(z,y) at
neighboring mesh points. In matrix notation, (1.7) can be written as

(1.8) Aw =k,
where

[ 1 0—% —%“ [w; ] (91 + 911

0 1-3-% we g5+
4 4 1 5 1+ g7

(1.9) A= w = ,andk:z

-3-5 10 w3 g2+ 94

-1_.1 9 1 w.

.71 7% i | W4 | | 98 + 10 |

Here, k is a vector whose components can be calculated from the known
boundary values g;. Now, it is obvious that the matrix A can be written as
I — B, where

0011
1{o0011

(1.10) B=11l1100
1100

Evidently, both the matrices A and B are real and symmetric, and it is
clear that the entries of the matrix B are all nonnegative real numbers. The
characteristic polynomial of the matrix B turns out to be simply

(1.11) #(4) = det(ul — B) = 2 (;f - i) ,

so that the eigenvalues of B are u; = —3, p2 = 0 = p3, and g4 = 3, and thus



6 1. Matrix Properties and Concepts

sl = 5

ax |ui| = =.

112;'54 mi=75

Since the eigenvalues v; of A are of the form 1 — y;, the eigenvalues of A4 are
evidently positive real numbers, and it follows that A is a real, symmetric,and
positive definite matrix. As the matrix A is nonsingular, its inverse matrix

A1 is uniquely defined and is given explicitly by

7122
111722
_1__
(1.12) 4 Te6f2271]"
2217

and thus the entries of the matrix A™! are all positive real numbers. We shall
see later (in Chap. 6) that these simple conclusions, such as the matrix B
having its eigenvalues in modulus less than unity and the matrix A~! having
only positive real entries, hold quite generally for matrix equations derived
from self-adjoint second-order elliptic partial differential equations.

Since we can write the matrix equation (1.8) equivalently as

(1.13) w = Bw + k,

we can now generate for this simple problem our first (cyclic) iterative
method, called the point Jacobi or point total-step method.? If w(® is an
arbitrary real or complex vector approximation of the unique (since A is non-
singular) solution vector w of (1.8), then we successively define a sequence
of vector iterates w(™ from

(1.14) w™) — Bw™ Lk m>o0.

The first questions we would ask concern the convergence of (1.14), i.e., does
each lim,, o wy") exist, and assuming these limits exist, does each limit
equal w; for every component j? To begin to answer this, let

™ = wim) _ w, m>0,

where €(™) is the ervor vector associated with the vector iterate w(™. Sub-
tracting (1.13) from (1.14), we obtain

e(mtD) = Belm),
from which it follows inductively that

(1.15) €™ = B™e®, m>o0.
For any component j, it is clear that lim,,_ e§m) exists if and only if

limp o0 wﬁm) exists, and if these limits both exist then limpm w§m) = w,

2 Other names are also associated with this iterative method. See Sect. 3.1.
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if and only if limy, oo eﬁ-m) = 0. Therefore, with (1.15), if we wish each com-
ponent of the error vector to vanish in the limit, we seek conditions which
insure that

(1.16) lim B™e® =0,

m-—+00

for any vector €(?). But seeking conditions to insure (1.16) is equivalent to
determining when

(1.17) lim B™ =0,

m~—oC
where O is the null n x n matrix. This will be discussed in the next section.

1.3 Norms and Spectral Radii

The concepts of vector norms, matrix norms, and the spectral radii of ma-
trices play an important role in iterative numerical analysis. Just as it is
convenient to compare two vectors in terms of their lengths, it will be simi-
larly convenient to compare two matrices by some measure or norm. As we
shall see, this will be the basis for deciding which of two iterative methods is
more rapidly convergent, in some precise sense.

To begin with, let €™ be the n-dimensional vector space over the field of
complex numbers € of column vectors x, where the vector x, its transpose
x7T, and its conjugate transpose x* are denoted by

I
)
T * _[= = -
X = . y X :‘[IlyxZa"')zn]a X =[$1,$2,"',.’L'n],
Tn
where 1,2, -+, T, are complex numbers, and Z; is the complex conjugate

of Z;.

Definition 1.1. Let x be a (column) vector of €". Then,

n 3
(1.18) lIxf = (x*x)% = (Z lx.-lz)

=1
is the Euclidean norm (or length) of x.
With this definition, the following results are well known.

Theorem 1.2. Ifx and y are vectors in C", then

Ix]| > 0, unless x =0;
(1.19) if a is a complez scalar, then ||ox|| = [a|-{|x]};
llx -+ yll < il + llyll-
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If we have an infinite sequence x(®), x(1), x(2) ... of vectors of C", we say
that this sequence converges to a vector x of " if

lim z{™ =z; foralll1<j<n,

m—00 7

where xg-"') and z; are respectively the jth components of the vectors x(™)

and x. Similarly, by the convergence of an infinite series 3 ov_o (™ of vectors
of €" to a vector y of €™, we mean that

N
lim Zy§m)=yj, foralll1 <j<n.
=0

N-—oo
In terms of Euclidean norms, it then follows from Definition 1.1 that
X — x| 50, asm — oo,

if and only if the sequence x®,x(1), ... of vectors converges to the vector x,
and similarly

N
Zy('")-—y —0, asN - oo,

m=0

if and only if the infinite series Y p._, y™ converges to the vector y.
Our next basic definition, which will be repeatedly used in subsequent
developments, is

Definition 1.3. Let A = [a; ;] be an n X n complex matrix with eigenvalues
Aiy1 €1 < n. Then,

(1.20) p(4) == Joax Y
is the spectral radius of the matrix A.

Geometrically, if all the eigenvalues A; of A are plotted in the complex
z-plane, then p(4) is the radius of the smallest disk® |2| < R, with center at
the origin, which includes all the eigenvalues of the matrix A.

Now, we shall assign to each n x n matrix A with complex entries a
nonnegative real number which, like the vector norm ||x||, has properties of
length similar to those of (1.19).

Definition 1.4. If A = [a; ;] is an n x n complex matrix, then

(1.21) | Al := sup M

x#0 1]l

3 To be precise, the set of points z for which |z — a| < R is called a disk, whereas
its subset, defined by |z — a| = R, is called a circle.
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is the spectral norm of the matrix A.
Basic properties of the spectral norm of a matrix, analogous to those
obtained for the Euclidean norm of the vector x, are given in

Theorem 1.5. If A and B are two n X n complex matrices, then

I|Al| > 0, unless A = O, the null matriz;

(1.22) if a is a complex scalar , ||aA| = |o - || Al;
' A+ Bl < | All + || BIl;
IA- Bl <Al B
Moreover,
(1.23) Il Ax|| < JLA] - llx}

for all vectors x, and there exists a nonzero vector y in € for which

(1.24) Ayl = LA} - lly |-

Proof. The results of (1.22) and (1.23) follow directly from Theorem 1.2 and
Definition 1.4. To establish (1.24), observe that the ratio || Ax||/||x||, for any
x # 0, is unchanged if x is replaced by ax, where o is a nonzero scalar.
Hence, we can write that

Il All = sup {lAx|.
Ixli=1

But as the set of all vectors x with ||x|] = 1 is compact in €", and as Ax is
a continuous function defined on this set, then there exists a vector y with
Ilyll = 1 such that

IAll = sup || Ax|| = || Ay],
Ixll=1

which completes the proof. B

To connect the spectral norm and spectral radius of Definition 1.3 and
Definition 1.4, we have the

Corollary 1.6. For an arbitrary n x n complezr matriz A,

(1.25) 141l > p(A).

Proof. If X is any eigenvalue of A, and if x is a nonzero eigenvector associated
with the eigenvalue A, then Ax = Ax. Thus, from Theorems 1.2 and 1.5,

ALl = 12| = flAx]| < [|A}} - [|1x],

from which we conclude that |{A|| > |A| for all eigenvalues of A, which proves
(1.25).
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In the terminology of Faddeev and Faddeeva (1963) and Householder
(1958), (1.23) states that the spectral norm of a matrix is consistent with the
Euclidean vector norm, and (1.24) states that the spectral norm of a matrix
is subordinate to the Euclidean vector norm. There are many other ways of
defining vector and matrix norms that satisfy the properties of Theorems 1.2
and 1.5. Although some other definitions of norms are given in the exercises
for this section, we have concentrated only on the Euclidean vector norm and
the matrix spectral norm, as these will generally be adequate for our future

purposes.
Matrix spectral norms can also be expressed in terms of matrix spectral

radii. If

ail @1,2 " Gin G1,1 G2,1 *°° Gn,1
az,1 @2,2 " A2n a1,2 @22 - An2
A= y AT = ’

Gn 1 Gn2 "' " Gnn Q1 QG2n " Qnn

G1,1 G2,1 * Gn1

G)2 G2 - Gn2

At = . .
al,n 62,1; e a'ﬂ.,n

denote, respectively, the nxn matrix A with complex entries a; ;, its transpose
AT and its conjugate transpose A*, then the matrix product A*A is also an
n X n matrix.

Theorem 1.7. If A = [a; ;] is an n x n complez matriz, then

(1.26) 141l = [p(A* A).

Proof. The matrix A*A is a Hermitian and nonnegative definite matrix, i.e.,
(A*A)* = A*A and x*A*Ax = ||Ax||2 >0

for any vector x. As A*A is Hermitian, let {c;}-; be an orthonormal set of
eigenvectors of A*A, i.e., A*Aa; = v;a; where 0 < v; < vy <--- < v, and
aja; =0fori#j,andaja;=1forall1 <4, <n. If

n
X= Zciai

=1

is any nonzero vector, then by direct computation,



