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Preface

Pattern recognition has a long and respectable history within engineer-
ing, especially for military applications, but the cost of the hardware
both to acquire the data (signals and images) and to compute the
answers made it for many years a rather specialist subject. Hardware
advances have made the concerns of pattern recognition of much wider
applicability. In essence it covers the following problem:

‘Given some- examples of complex signals and the correct
decisions for them, make decisions automatically for a stream
of future examples.’

There are many examples from everyday life:

Name the species of a flowering plant.

Grade bacon rashers from a visual image.

Classify an X-ray image of a tumour as cancerous or benign.
Decide to buy or sell a stock option.

Give or refuse credit to a shopper.

Many of these are currently performed by human experts, but it is
increasingly becoming feasible to design automated systems to replace
the expert and either perform better (as in credit scoring) or ‘clone’ the
expert (as in aids to medical diagnosis).

Neural networks have arisen from analogies with models of the way
that humans might approach pattern recognition tasks, although they
have developed a long way from the biological roots. Great claims have
been made for these procedures, and although few of these claims have
withstood careful scrutiny, neural network methods have had great
impact on pattern recognition practice. A theoretical understanding of
how they work is still under construction, and is attempted here by
viewing neural networks within a statistical framework, together with
methods developed in the field of machine learning.

One of the aims of this book is to be a reference resource, so almost
all the results used are proved (and the remainder are given references
to complete proofs). The proofs are often original, short and I believe



2 Preface

show insight into why the methods work. Another unusual feature of
this book is that the methods are illustrated on examples, and those Those hardy perennials,
examples are either real ones or realistic abstractions. Unlike the proofs, the ‘exclusive or’ and
. two spirals’ problems,
the examples are not optional! do not sppear b this
The formal pre-requisites to follow this book are rather few, espe- book.
cially if no attempt is made to follow the proofs. A background in
linear algebra is needed, including eigendecompositions. (The singular
value decomposition is used, but explained.) A knowledge of calculus
and its use in finding extrema (such as local minima) is needed, as well
as the simplest notions of asymptotics (Taylor series expansions and
O(n) notation). Graph theory is used in Chapter 8, but developed from
scratch. Only a first course in probability and statistics 1s assumed, but
considerable experience in manipulations will be needed to follow the
derivations without writing out the intermediate steps. The glossary
should help readers with non-technical backgrounds.
A graduate-course knowledge of statistical concepts will be needed
to appreciate fully the theoretical developments and proofs. The sections
on examples need a much less mathematical background; indeed a good
overview of the state of the subject can be obtained by skimming the
theoretical sections and concentrating on the examples. The theory and
the insights it gives are important in understanding the relative merits
of the methods, and it is often very much harder to show that an idea
is unsound than to explain the idea.
Several chapters have been used in graduate courses to statisticians
and to engineers, computer scientists and physicists. A core of material
would be Sections 2.1-2.3, 2.6, 2.7, 3.1, 3.5, 3.6, 4.1, 4.2, 5.1-5.4, 6.1-6 4,
7.1-7.3 and 9.1-9.4, supplemented by material of particular interest to
the audience. For example, statisticians should cover 2.4, 2.5, 3.3, 3.4,
5.5, 5.6 and are likely to be interested in Chapter 8, and a fuller view

of neural networks in pattern recognition will be gained by adding 3.2,
4.3, 5.5-5.7, 7.6 and 8.4 to the core.
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Notation

The notation used generally follows the standard conventions of math-
ematics and statistics. Random variables are usually denoted by capital
letters; 1f X 1s a random variable then x denotes its value. Often
bold letters denote vectors, so x = (x;) is a vector with components

x,-,i= 1,.

9
E

I(A)

Np{ﬂ, E}
O(g(n))
Op(g(n))

p(x)
Pr{A}
Pr{A|B}

..,m, with m being deduced from the context.

1s the ‘doubt’ report.

denotes expectation. A suffix denotes the random variable
or distribution over which the averaging takes place.

is the indicator function of event A4, one if A happens,
otherwise zero.

denotes a normal distribution in p dimensions.

f(n) = O(g(n)) means [f(n)/g(n)| is bounded as n — oo.

Xn = Op(g(n)) means given € > 0 there is a constant B
such that Pr{|X,/g(n)| > B} < e for all n.

1s the outlier report.
denotes a probability density function.

denotes the probability of an event A.

denotes the conditional probability of 4 given B.
m-dimensional Euclidean space.

denotes the transpose of a matrix X.

a parameter or vector of parameters.

a parameter estimate.

the positive part, the maximum of the expression and
Zero.

the integer part (rounding down). The floor function.

the nearest integer (rounding up). The ceiling function.
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1

Introduction and Examples

This book is primarily about pattern recognition, which covers a wide
range of activities from many walks of life. It is something which we
humans are particularly good at; we receive data from our senses and
are often able, immediately and without conscious effort, to identify the
source of the data. For example, many of us can

recognize faces we have not seen for many years, even in disguise,

recognize voices over a poor telephone line,

as babies recognize our mothers by smell,

distinguish the grapes used to make a wine, and sometimes
even recognize the vineyard and year,

identify thousands of species of flowers and

spot an approaching storm.

Science, technology and business has brought to us many similar tasks,
including

diagnosing diseases,

detecting abnormal cells in cervical smears,

recognizing dangerous driving conditions,

identifying types of car, aeroplane, . . .,

identifying suspected criminals by fingerprints and DNA profiles,
reading Zip codes (US postal codes) on envelopes,

reading hand-written symbols (on a penpad computer),
reading maps and circuit diagrams,

classifying galaxies by shape,

picking an optimal move or strategy in a game such as chess,
identifying incoming missiles from radar or sonar signals,
detecting shoals of fish by sonar,

checking packets of frozen peas for ‘foreign bodies’,

spotting fake ‘antique’ furniture,
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deciding which customers will be good credit risks and
spotting good opportunities on the financial markets.

Humans can (and do) do some of the tasks quite well, but the techno-
logical pressure is to build machines which can perform such tasks more
accurately or faster or more cheaply than humans, or even to release
humans from drudgery. There are also purely technological tasks such
as reading bar codes at which humans are poor. Pattern recognition is
the discipline of building such machines:

‘It is felt that the decision-making processes of a human being are
somewhat related to the recognition of patterns; for example the next
move in a chess game is based upon the present position on the
board, and buying or selling stocks is decided by a complex pattern
of information. The goal of pattern recognition research is to clarify
these complicated mechanisms of decision-making processes and to
automate these functions using computers. However, because of the
complex nature of the problem, most pattern recognition research has
been concentrated on more realistic problems, such as the recognition
of Latin characters and the classification of waveforms.’

(Fukunaga, 1990, p. 1)

Since the best humans can perform many of these tasks very well,
even better than the best machines, it has been of great interest to
understand how we do so, and this is of independent scientific interest.
So there has for many years been an interchange of ideas between
engineers building pattern recognition systems and psychologists and
physiologists studying human and animal brains. Twice this has led to
great enthusiasm about machines influenced by ideas from psychology
and biology. The first was in the late 1950s with the perceptron, the
second 1n the mid 1980s over neural networks. Both rapidly left their
biological roots, and were studied by mathematical techniques against
engineering performance goals as pattern recognizers. This book is
not about the impact of the study of neural networks as models of
animal brains, but discusses what are more accurately (but rarely) called
artificial neural networks which have been developed by a community
which was originally biologically motivated (although many ‘neural
network’ methods were not). Thus for the purposes of this book, a
neural network i1s a method which arose or was popularized by the
neural network community and has been or could be used for pattern
recognition. Many of the originators of the current wave of interest
were more careful in their terminology; whereas Hopfield (1982) did
talk about neural networks, Rumelhart & McClelland (1986) used the
term ‘parallel distributed processing’, and ‘connectionist’ has also been
popular (for example, see Hinton, 1989a).

Marginal notes such as
this replace footnotes
and offer explanation,
sidelines, and opinion.

Many of the ideas had
arisen earlier in the
pattern recognition
context, but without the
seductive titles had
made little impact.



Gooseberries are the
fruits of the species
Ribes grossularia.

We should never
underestimate the
power of simply
remembering some or
all of the examples and
comparing test
examples with our
memory.
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One characteristic of human pattern recognition is that it 1s mainly
learnt. We cannot describe the rules we use to recognize a particular
face, and will probably be unable to describe it well enough for anyone
else to use the description for recognition. On the other hand, botanists
can give the rules they use to identify flowering plants.

Most learning involves a teacher. If we try enough different wines
from unlabelled bottles, we may well discover that there are common
groupings, and that one group has the aroma of gooseberries (if the
latter have been experienced). But we will need a teacher to tell us that
the common factor i1s that they were made (in part) from the sauvignon
blanc grape. The discovery of new groupings is called unsupervised
pattern recognition. A more common mode of learning both for us and
for machines is to be given a collection of labelled examples, known
as the training set, and from these to distil the essence of the grouping.
This i1s supervised pattern recognition and is used to classify future
examples into one of the same set of classes (or say it is none of these).

There 1s a subject known as machine learning which has emerged
from the artificial intelligence and computer science communities. It too
1s concerned with distilling structure from labelled examples, although
the labels are usually ‘true’ and ‘false’.

‘Machine Learning is generally taken to encompass automatic learning
procedures based on logical or binary operations, that learn a task
from a series of examples.’

‘Machine Learning aims to generate classifying expressions simple
enough to be understood easily by humans. They must mimic human
reasoning sufficiently well to provide insight into the decision process.
Like statistical approaches, background knowledge may be exploited

in development, but operation is assumed without human intervention.
(Michie et al., 1994, p. 2)

This stresses the need for a comprehensible explanation, which is needed
in some but not all pattern recognition tasks. We have already noted
that we cannot explain our identification of faces, and to recognize Zip
codes no explanation is needed, just speed and accuracy.

This quotation mentions statistical approaches, and statistics is the
oldest of the disciplines concerned with automatically finding structure
in examples. As in the quotation, statistics is often thought of as
being less automatic than the other disciplines, but this is largely an
artefact of its greater age; its current research frontiers are very much
concerned with replacing the human choice of methods by computation.
Furthermore, statistics encompasses what the community of statisticians
do, of whom your author is one!
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1.1 How do neural methods differ?

Assertions are often made that neural networks provide a new approach
to computing, involving analog (real-valued) rather than digital signals
and massively parallel computation. For example, Haykin (1994, p. 2)
offers a definition of a neural network adapted from Aleksander &

Morton (1990):

‘A neural network 1s a massively parallel distributed processor that has
a natural propensity for storing experiential knowledge and making it
available for use. It resembles the brain in two respects:

1.  Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are
used to store the knowledge.’

In practice the vast majority of neural network applications are run on
single-processor digital computers, although specialist parallel hardware
1s being developed (if not yet massively parallel). However, all the
other methods we consider use real signals and can be parallelized to a
considerable extent; it is far from clear that neural network methods will
have an advantage as parallel computation becomes common, although
they are frequently so slow that they need a speed-up. (Parallelization
on real hardware has proved to be non-trivial; see Pitas, 1993 and
Przytula & Prasanna, 1993.) We will argue that a large speed-up can
be achieved by designing better learning algorithms using experience
borrowed from other fields.

The traditional methods of statistics and pattern recognition are
either parametric based on a family of models with a small number
of parameters, or non-parametric in which the models used are totally
flexible. One of the impacts of neural network methods on pattern
recognition has been to emphasize the need in large-scale practical
problems for something in between, families of models with large but
not unlimited flexibility given by a large number of parameters. The two
most widely used neural network architectures, multi-layer perceptrons
and radial basis functions (RBFs), provide two such families (and several
others already existed in statistics).

Another difference in emphasis is on ‘on-line’ methods, in which the
data are not stored except through the changes the learning algorithm
has made. The theory of such algorithms is studied for a very long
stream of examples, but the practical distinction is less clear, as this
stream 1s made up either by repeatedly cycling through the training set
or by sampling the training examples (with replacement). In contrast,
methods which use all the examples together are called ‘batch’ methods.

Many neural networks
are excluded by this
definition, including
those of Kohonen. One
could ask how a
machine comes to have
‘natural’ properties.

The name ‘multi-layer
perceptrons’ is
confusing; they are not
multiple layers of
perceptrons. We call
them feed-forward
neural nets.



Someone else may have
made the measurements
for us.

It may help to know
which classes are
plausible.

This might be
unrealistic for
hand-written addresses,
and is well beyond
current performance
levels.
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It 1s often forgotten that there are intermediate positions, such as using
small batches chosen from the training set.

1.2 The pattern recognition task

Except in Chapter 9 we will be exclusively concerned with supervised
pattern recognition. Thus we are given a set of K pre-determined
classes, and assume (in theory) the existence of an oracle that could
correctly label each example which might be presented to us. When we
recelve an example, some measurements are made, known as features,
and these data are fed into the pattern recognition machine, known as
the classifier. This is allowed to report

‘this example i1s from class ¢’ or
‘this example is from none of these classes’ or
‘this example i1s too hard for me’.

The second category are called outliers and the third rejects or ‘doubt’
reports. Both can have great importance in applications. Suppose we
have a medical diagnosis aid. We would want it to report any patient
who apparently had an unknown disease, and we would also want it
to ask the opinion of a senior doctor if there was real doubt. Often
rejects are referred to a more expensive second tier of classification,
perhaps a human or (as in Zip code recognition) a slower but more
powerful method or even (as in analytical chemistry) for more expensive
measurements to be made. Many pattern recognition systems always
make a firm classification, but this seems to us more often to be bad
design than a conscious decision that a firm decision was necessary.

The primary assessment of a system will be by its performance: a
Z1ip code recognition system might be required to reject less than 2% of
the examples and mis-read less than 0.5% of the remainder. In medical
diagnosis we will be more interested in some errors than others, in
particular in missing a disease, so the errors will need to be weighted.
There may be a cost trade-off between rejection and error rate.

The other aspect of performance stressed in the quote from Michie
et al. (1994, p. 2) is the power of explanation. Users need to have
confidence in the system before it will be adopted. No one really cares if
an odd letter 1s mis-routed, but patients do care if they are mis-diagnosed,
and when a civilian airliner is mistaken for an enemy aircraft, questions
are raised. So for some tasks ‘black boxes’ are unacceptable whatever
their performance advantage (possibly even if they appear perfect on
test). The methods of Chapters 7 and 8 are often found to be more
acceptable for such tasks.
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Some tasks are slightly different. We (and medics) often think of
medical diagnosis as deciding which disease a patient has, but this
ignores the possibility of two or more concurrent diseases; what we
should really be asking is whether the patient has this disease for each
of a range of diseases. This can be thought of as a compound decision,
the classes each being a subset of the diseases, but it is normally helpful
to make use of special structure within the classes.

Design issues

Although most of this book is about designing the pattern recognition
machine, often the most important aspect of design is to choose the right
features. If the wrong things are measured (or, more often these days
with digital data, if the data are condensed too much) the task may be
unachievable. Much of the enhanced success of Zip-code recognition
systems has come from better features (for example, Simard et al.,
1993) rather than through more complicated classifiers. Sometimes
good features can be found by training a classifier on a large number
of features and extracting good ones (for example, by the methods of
Chapters 9 and 10), but most often problem-specific insights are used.

In a few problem domains very specific rules are known which
can be used to design a classifier; as an extreme example compilers
can classify C programs as correct or invalid without needing to see
any previous programs. Such information is often in the form of a
formal grammar, and systems based on specifying such grammars are
often called syntactic pattern recognition systems (Fu, 1982; Gonzalez
& Thomason, 1978), but are of very restricted application. Allowing
stochastic grammars in which the structure is given but the probabilities
are learnt allows a little more flexibility. Chou (1989) gives an exam-
ple of recognizing typeset mathematical expressions using a stochastic
grammar.

In the vast majority of applications no structural assumptions are
made, all the structure in the classifier being learnt from data. In the
pattern recognition literature this is known as statistical pattern recog-
nition. The training set is regarded as a sample from a population of
possible examples, and the statistical similarities of each class extracted,
or more precisely the significant differences between classes are found.
A parametric or non-parametric model is constructed for the distribu-
tion of features for examples from each class, and statistical decision
theory used to find an optimal classification. This is sometimes known
(Dawid, 1976) as the sampling paradigm.



Note that this is not the
procedure called
cross-validation, despite
the misuse of that term
in the neural networks
literature.
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Another view, the diagnostic paradigm, goes back in the statistical
literature at least to Cox (1958), and was developed in medical ap-
plications by Jerome Cornfield. This said that we were not interested
in what the classes looked like, but only given an example in what
the distribution over classes is for similar examples. The main method
of this approach became known as logistic discrimination (Anderson,
1982), but was never widely known even in statistics and (as far as
we could ascertain) appears in no pattern recognition text. This is the
main approach of the neural network school.

When humans are learning concepts, we are often able to ask
questions or to seek the classifications of examples which we synthesize
(this being a paradigm of experimental science). Alternatively, we
may describe our understanding to an expert, who will then supply a
counter-example. Can we allow our machines to do the same? The
1dea has occurred in machine learning (Angluin, 1987, 1988, 1993), but
apparently only for learning logical concepts.

We will sometimes have qualitative knowledge about the task in
hand; we might know that only the sign of one of the features was
material, or that the probability of a positive outcome was increasing
in some continuous feature. Of course we should design the classifier to
agree with such information, which Abu-Mostafa (1990, 1993, 1995a, b,
c) calls *hints’. Sometimes this is easy (just use the sign of the feature)
but it can be very difficult (as in monotonicity). Generally hints (if true)
help to avoid over-fitting to the training set, and this seems to be the

real explanation of the gains in exchange-rate performance observed by
Abu-Mostafa (1995a).

Method tuning and checking

All methods have some knobs which can be tweaked. Sometimes
taking the class of the nearest training-set example is regarded as a
fully automatic method, but we need to specify the metric used to find
the nearest. (If the answer is ‘use Euclidean distance’ we still have to
specify the units of measurement.)

How should those knobs be set? The most obvious way 1s to
choose them to maximize performance. One thing we should not do
1s to evaluate the performance on a test set and choose the best-
performing classifier, since we will then have no way to measure the
true performance. We can keep back another test set, called a validation
set, and use the performance on that to set the knobs. However, to
obtain a sensitive measure of the performance, the validation set will



