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Preface

This book originated from the authors’ desire to give an explanation of several
recent applications of p-adic analysis to number theory and especially to arithmetic
geometry. Central to this end has been the work done by several people (including
the authors) to prove the Dynamical Mordell-Lang conjecture, which gives predic-
tions about how the orbits of points in a variety under self-maps should intersect
subvarieties. As the name suggests, this can be interpreted as a dynamical analogue
of the classical Mordell-Lang Conjecture (proved by Faltings and Vojta) concerning
intersections between finitely generated subgroups and subvarieties in a semiabelian
variety.

Many results working towards this conjecture have used p-adic analysis, and we
describe all known (to us) partial results up to this point in time—both those using
p-adic analysis and those using alternative approaches—towards the Dynamical
Mordell-Lang Conjecture. In some cases, we present entire proofs of results, while
in other cases only a sketch is given, and in certain cases only a brief overview of the
idea of the proof is provided. Our choice should not be interpreted as our opinion
about the relative importance of the included results, but is instead an editorial
choice regarding which material we thought best fits the overarching theme of this
book.

We also give other applications of p-adic analysis to number theory and arith-
metic geometry. In these cases, our list of applications is not meant to be exhaustive,
but rather our goal is to show the wide reach of applications and potential appli-
cations of p-adic analysis to arithmetic geometry. While the uses of p-adic analytic
methods we give do not always explicitly relate to the Dynamical Mordell-Lang
Conjecture, we have generally favored applications of p-adic analysis to problems
with some relation to the Dynamical Mordell-Lang Conjecture.

We thank all our colleagues with whom we wrote many of the papers whose
results are detailed in this book; obviously, without the joint efforts we put towards
solving the Dynamical Mordell-Lang Conjecture we would not have had a topic for
this book. So, we thank Rob Benedetto, Ben Hutz, Par Kurlberg, Jeff Lagarias,
Tom Scanlon, Yu Yasufuku, Umberto Zannier, and Mike Zieve. We are also grateful
to the referees for their careful reading of a previous version of this book, and for
suggesting many improvements for our work. Last, but definitely not least, we
thank our families for their love and support while writing this book.

xi



xii PREFACE

Notation

We let Z, @, R and C be the sets of integer, rational, real, respectively, complex
numbers. Ny is the set of all nonnegative integers, while N is the set of all positive
integers.

An arithmetic progression is a set of the form {a+rn},en,, where the common
difference r may be equal to 0 (in which case the set consists of a single element).
If the common difference r is nonzero, then the arithmetic progression is infinite.
Note that in the literature, sometimes one calls such a sequence a one-sided arith-
metic progression in order to distinguish it from a two-sided arithmetic progression,
which is a set of the form {a + rn},cz. However, since in this book we mainly
encounter one-sided arithmetic progressions and only occasionally encounter two-
sided arithmetic progressions, our convention is to call arithmetic progression a
sequence {a + rn},en,, while a sequence {a + rn},ez is called a two-sided arith-
metic progression.

For a matrix A, we denote by A? its transpose.

For a set U, we denote by idy the identity function on U.

For any field K, we denote by char(K) its characteristic. By K we denote a
fixed algebraic closure of K.

For any subfield K C @, we denote by ox the ring of algebraic integers con-
tained in K. If K is a number field, and p is a prime ideal of K, then k, is the
residue field corresponding to p, i.e., k; 5ok /p.

The usual affine space of dimension m is denoted by A™; for any field K, we
have that A™(K) consists of all m-tuples of points with coordinates in K. Similarly,
we denote by P™ the projective space of dimension m; for any field K, we have that
P™(K) consists of all equivalence classes of (m+1)-tuples of points with coordinates
in K not all equal to 0, under the equivalence relation

[To:@1 i Tm]~[Yo:y1:i i YUm]
if and only if there exists a nonzero scalar ¢ € K such that
y; =cx; foralli=1,...,m.

By affine variety we mean a subset of an affine space defined by a set of algebraic
equations. Note that we do not ask a priori the variety be irreducible. Similarly,
by projective variety we mean a subset of a projective space defined by a set of
algebraic equations. We endow both the affine space and the projective space with
the Zariski topology where the closed sets are precisely the (affine, respectively
projective) varieties. We say that X is a quasiprojective variety if it is the open
subset of a projective subvariety of some projective space. We say that a variety X
is defined over a field K if it may be defined by a set of equations with coefficients in
K. For a variety X defined over a field K, we denote by X (K) the set of K-rational
points of X.

We denote by G, the affine line A! endowed with the additive group law; we
extend this law coordinatewise to G/;. We denote by G, the (Zariski open subset
of the affine line) A'\ {0}, i.e., the affine line without the origin, endowed with the
multiplicative group law. Similarly to G, we extend the multiplicative group law
to Gp,.

An abelian variety is an irreducible projective variety which has the structure
of an algebraic group.
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For aset X, amap ® : X — X is called a self-map. In general, for a self-map
® : X — X and for any integer n > 0, we denote by ®™ the n-th compositional
iterate of ®, i.e. ®"* = P o--- 0o ® (n times), with the convention that ®° is the
identity map. The orbit of a point 2 € X is denoted as Og(z) and it is the set of
all @"(x) for n € Np.

A dynamical system consists of a topological space X endowed with a contin-
uous self-map @.

For two real-valued functions f and g, we write f(z) = o(g(z)) if limy—, o f(z)/
g(xz) = 0. Similarly, we write f(x) = O(g(x)) if the function z — f(z)/a(z) is
bounded as z — oo.

In a metric space (X,d(-,-)), for x € X and r € Ry we denote by D(z,r) the
open disk

D(z,r) ={y € X:d(z,y) <r}.
We denote by D(z,r) the closure of D(z,r).
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CHAPTER 1

Introduction

In this chapter we describe various instances of the Dynamical Mordell-Lang
Conjecture which appear in seemingly different areas. We conclude our Introduction
by giving a brief overview of the rest of the book.

1.1. Overview of the problem

We start by presenting several arithmetic questions which are all connected,
though this may not be so obvious a priori. All these questions have in common
the following theme: we have a dynamical system ® on a topological space X, and
then for a point @ € X and a closed subset V of X, we ask for what values of
n € Ny we have ®"(a) € V? The underlying theme of this book is that all the
questions we consider have, or are conjectured to have, the same answer to the above
question: finitely many arithmetic progressions. We also recall our convention that
an arithmetic progression of common difference equal to 0 is simply a singleton.

The cases we consider are the following ones:

(1) Find all n € Ny such that a, = 0 where {a,}nen, is a linear recurrence
sequence. Say that the recurrence relation verified by the sequence is given
for all n > 0 by

Apim = ClAntm—1 + -+ + Cnln,

for some given complex numbers ¢y,...,¢,. Then the ambient space is
the affine space A™ with the Zariski topology, while the dynamical system
is the one given by

@((Il....,xm)) = (1:2--~~uxmvclwm+"'+cmw1)w
the starting point of the iteration is
xT = (a.o, veay am_l),

and V C A™ is the hyperplane given by the equation z; = 0. In Sec-
tion 1.2 and Subsection 2.5.1, we explain this example in greater detail.
In Section 2.5 we prove that the answer to this question is always a finite
union of arithmetic progressions. A related, but more general problem in-
volving (multi-dimensional) polynomial-exponential equations is discussed
in Section 1.3.

(2) Find all n € Ny such that given a matrix A € M, (C) acting on the complex
affine space A™(C), a point o« € A"(C), and a subvariety V' C A", then
A™a € V(C). This case is discussed in Section 1.4 and it turns out to
be equivalent with the problem (1) discussed above (see the equivalence
proven in Proposition 2.5.1.4).
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(3) Find all n € Ny such that given an endomorphism ® of a quasiprojective
variety X defined over C, a point « € X(C), and a subvariety V of X,
then ®"(z) € V(C). This problem, called the Dynamical Mordell-Lang
Conjecture generalizes both of the above problems described above (see
Section 1.5 for a first discussion of this conjecture). It is expected the
answer to this question is again finitely many arithmetic progressions.

(4) Given a power series

flz) = Z an2"
n=0

which satisfies a linear differential equation with polynomial coefficients,
describe the set

St :={n e Np: a, =0}.

Rubel [Rub83, Problem 16] conjectured that Sy is a finite union of arith-
metic progressions. We discuss this problem in Subsection 3.2.1, and show
that a positive answer for an extension of the above Dynamical Mordell-
Lang Conjecture to rational maps would solve Rubel’s question.

. 1.2. Linear recurrence sequences
Let {F,,},>0 be the Fibonacci sequence defined by
Fy=0,F, =1and F,,42 = F,,41 + F,, for all n > 0.
Also, let {an}n>0 be the sequence defined recursively by

Ap42 = 5an+1 — bay,,

where ag = 15 and a; = 3.
QUESTION 1.2.0.1. What are the numbers which appear in both of the sequences

{Fm}men, and {an}nen, ?
‘We can compute easily the first elements in both sequences:
Fo=0,FA=1,F,=1F;3=2F;=3,F;=5,Fs=8, F; =13, ...
and
7 3
= E, a) = 5, a.2=4, a3=11, ay4 :31, as :89, a5=259
One observes that F;; = 89 = as, and it is a reasonable question to ask whether
this is the only answer to Question 1.2.0.1. This is a hard question since one would
have to solve the equation F,, = a, in nonnegative integers m and n (for more
details, see [Eve95]). Moreover, since it is easy to find a formula for the general

term of both of these sequences (see Proposition 2.5.1.4), Question 1.2.0.1 reduces
to finding m,n € N such that

1 1+v5\ " (1=vB\ ) oz enet
(5 (5 ) e

On the other hand, if we were to ask the easier question of when the above equal-
ity holds when m = n, the answer would be never since (by a simple inductive
argument) one can show that ay > Fj for all k € N.

ag
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In general, given two linear recurrence sequences {@, }men, and {b, }nen,, one
would like to understand whether there exists an underlying structure for the solu-
tions (m,n) € N x N for which a,,, = b,,. Or, at least, for the easier case, one would
like to understand the structure of the set of all n € N such that a, = b,. It is
immediate to see that this last case reduces to understanding when a given linear
recurrence sequence {cy }nen, (in this case, ¢, = a,, — b,,) takes the value 0. Then
the answer is that if there exist infinitely many n € N such that ¢,, = 0, then there
exists an infinite arithmetic progression {f + nk},en, such that ceypnr = 0. This
will be proven in Section 2.5. As described in Section 1.1, the proper dynamical
setting for this example is as follows: given a linear recurrence sequence

{am}men, C C
which satisfies the relation
Apt+m = ClAntm—1 T -+ Cnn,
for some given complex numbers ¢y, ..., ¢y, then the dynamical system is the one
given by the map
D((x1ye.. @m)) = (224..., T+ C1Tm + -+ + Cn1)

acting on the m-dimensional affine complex space A™. Then finding all n € Ny
such that a,, = 0 is equivalent with finding all n € Ny such that

®"((ag,...,am-1)) € V(C),
where V' € A™ is the hyperplane given by the equation x; = 0.

1.3. Polynomial-exponential Diophantine equations

Let m,k € N, let F € Z[xy,....Zm.Y1,---, Y], and let ry,...,7 € Z. A
polynomial-exponential equation has the form

F(j1,..-s Tty s o) =0,

where the variables ji,...,Jm € Z, respectively r1,...,rx € Ny. In general, there
might be many solutions to the above equation, especially if the degree of f in z; is
1 for at least one variable x;. But, even if deg, f = 1, there might be no solutions
due to some local constraints such as in the following case:

(1.3.0.1) 21zdr; — 7-3™xy + 14 - 5222 — 497123+ 2 = 0,

when there are no solutions xy,22, 23 € Z and ny,ny € Ny by considering the
congruence modulo 7 for the equation (1.3.0.1). Now, even if one assumes j; = j, =
«++= j, = j, and that the polynomial f has the variables x; and y; separated, the
problem is not easier. Even also assuming that 1 = ro -+ = 7 does not simplify
the problem much. For example, we discuss in Chapter 13 the following special
case:

k
g(@) =Y ep™,
i=1
where g € Z[z], ¢1,...,¢x € Z and p is a prime number. Essentially, one expects

that if g(x) has few nonzero p-adic digits, then x (or a linear function evaluated at
z) would also have few p-adic digits. However, this is far from being proven even in
simple cases such as g(z) = 2% and k > 5 (for more details, see [BBM13, CZ00,
CZ13] and the references therein).
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On the other hand, if one assumes that
N= " =Jm=N1=nNg = =N,

then the problem reduces essentially to the one discussed in Section 1.2 (see also
Section 2.5). Thus one obtains that if there exist infinitely many n € Z such that

1.3.0.2 Hnrt r2. ... r2) =0,
1272 k

where H € Z[2, 21, 22, . . ., 2k, then there exists an infinite arithmetic progression
{€+ nk}nen, such that each element of it is a solution to (1.3.0.2).

1.4. Linear algebra

Let A be an invertible matrix in GL,(C), let V' be a linear subspace of C", and
let 2 € C".

QUESTION 1.4.0.1. Is there a simple description of the set of positive integers
n such that A"z € V?

We note that the problem discussed in this section could easily be asked for
an arbitrary subvariety defined over C of the affine space A”; however this more
general question reduces to the case V' is a linear subvariety.

If V is a line passing through the origin of C”, then once there exist two distinct
nonnegative integers m < n such that

(1.4.0.2) AMzeV and A"z €V,
then we immediately conclude that V is fixed by A"~ and therefore
A™H=m); ¢ V for all £ € No.

In particular, if ko is the smallest positive integer k such that A* fixes V, and if
my is the smallest nonnegative integer m such that A™z € V, then A"z € V if and
only if n = mg + ko for some nonnegative integer £.

Things are not so simple in general. For example, when V is a line that does
not pass through the origin, it is easy to see that you can have distinet m and n
such that (1.4.0.2) holds without getting an entire arithmetic progression of such
integers, just by choosing a line V' which passes through two arbitrary points A™z
and A™z. But in the case of lines not passing through the origin, once you have a
large finite number of integers n such that

(1.4.0.3) A"z eV,

you must have an infinite arithmetic progression of such n. There is even an explicit
bound on that number due to Beukers-Schlickewei [BS96], which is likely nowhere
near sharp. In fact, under the assumption that each eigenvalue of A is either equal
to 1 or is not a root of unity, and furthermore for each two distinct eigenvalues A;
and A; of A we have that A;/)\; is not a root of unity, Beukers-Schlickewei [BS96]
show that there are at most 61 integers n € Ny such that (1.4.0.3) holds. The
general case of an arbitrary matrix A follows easily from this special case.
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1.5. Arithmetic geometry

The subject of this book is a geometric generalization (see Conjecture 1.5.0.1)
of all of the above problems, and it is also connected to the classical Mordell-
Lang Conjecture (see Chapter 3). In each of the three problems discussed in Sec-
tions 1.2 to 1.4, we deal with a geometric object: the line V' in Section 1.4, or the
hypersurface F = 0 in Section 1.3, or the hyperplane z; = 0 in the affine space
A" as in Section 1.2. And we want to understand when an arithmetic dynamical
system intersects the geometric object. The arithmetic dynamical system is the
iteration of the matrix A in Section 1.4, or the input of an integer number into the
equation F' = 0 (which is a discrete dynamical system simply because all integers
are obtained from 0 by repeated operations of either z +— z+1or 2z +— 2z —1), or
a linear recurrence sequence as in Section 1.2. And in each case one obtains that
once there exist infinitely many instances of the intersection between the geomet-
ric object and the arithmetic dynamical object, then there is a structure for the
intersection which is given by finitely many arithmetic progressions. This principle
is formally stated in the Dynamical Mordell-Lang Conjecture (for more details, see
Chapter 3).

CoNJECTURE 1.5.0.1 (Dynamical Mordell-Lang Conjecture). Let X be a quasi-
projective variety defined over C, let ® be any endomorphism of X, let a € X(C),
and let V C X be any subvariety. Then the set of alln € Ng such that @"(a) € V(C)
is a union of finitely many arithmetic progressions.

We note that the Dynamical Mordell-Lang Conjecture can be formulated over
any field K of characteristic 0 (see Conjecture 3.1.1.1); however such a formulation
reduces to proving the case when K = C (see Proposition 3.1.2.1).

A special case of Conjecture 1.5.0.1 that is known is when X is an abelian
variety, and ® is the translation-by-P endomorphism of X for some point P €
X (C). In this latter case we encounter the cyclic case of the classical Mordell-Lang
Conjecture (for more details, see Section 3.4).

We present below a few cases of Conjecture 1.5.0.1; all our examples are set in
the ambient space X = A3 in which case there is at this time no general proof of
the Dynamical Mordell-Lang Conjecture.

ExAMPLE 1.5.0.2. Consider the endomorphism

;A% — A3

given by
®(z,y,2) = (z° + z,9° + y,2% + 2).

Let V C A3 be the plane given by the equation

rtyt+z= 1L
Then for most points a € A3(Q), the set

S:={neNy: ®(a) e V(Q)}

is finite. For example, this can be seen immediately if all three coordinates of «
are integers (in which case, at the very most, S has 1 element). However, if o
is an arbitrary point in A3(Q), then it is much harder to prove that S is always
a finite union of arithmetic progressions (possibly with common difference equal
to 0). However, we will see later (see Corollary 7.0.0.1) that for any subvariety
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V C A3, the set S is a finite union of artihmetic progressions. Furthermore, using
the classification of periodic curves under the coordinatewise action of a polynomial
done by Medvedev-Scanlon [MS14], one can show that in the case of the above
plane V', the set S is finite assuming « is not preperiodic. Now, if « is preperiodic,
the question of whether S contains an infinite arithmetic progression is equivalent
with finding three preperiodic points a, b and ¢ for the action of the polynomial

f(z) =22+ 2,
such that
a+b+c=1.
This last question is a deep question related to the problem of unlikely intersections
in dynamics which we discuss in Subsection 14.2.2.
EXAMPLE 1.5.0.3. Consider the endomorphism
d: A3 — A3
given by
O(z,y,2) = (2, ¢, 2%).
Let o = (0,4,0) and let V € A® be the surface given by the equation
2 +y+z2t =i

We easily see that a is periodic under the action of ® and moreover, ®"(a) € V
if and only if n is an even nonnegative integer. Actually, using Theorem 9.3.0.1
one can show that for any a € A3(C) and for any complex subvariety V' C A3,
the set S of all n € Ny such that ®"(«) € V(C) is a finite union of arithmetic
progressions. Furthermore, according to the classical Mordell-Lang conjecture for
an algebraic torus (proven by Laurent [Lau84]; see also Section 3.4), one obtains
that the above set S is finite unless V' contains a translate of a positive dimensional
algebraic torus.

ExXAMPLE 1.5.0.4. Consider the endomorphism
®: A — A3
given by
$(z,y,2) = (2> +y,4° + 2,2 + x).
Let @ = (1,1,1) and S C A® be the surface given by the equation
;1:+y2 122 =.1'2—|-;l/3+2.

It is immediate to see that the entire orbit Og(«) is contained in the surface S,
and the reason for this is that V' contains the line L given by the equation

E=7=z

which is fixed by the action of ®. However, if V' is an arbitrary subvariety of A3,
and also « is an arbitrary point in A*(C), then it is not known whether Conjec-
ture 1.5.0.1 holds. In some sense, the endomorphism @ from this Example lies
outside all the presently known cases of the Dynamical Mordell-Lang Conjecture
(see Chapter 3 for more details).



