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Preface

This book is designed to introduce the reader to the theory of semisimple
Lie algebras over an algebraically closed field of characteristic 0, with
emphasis on representations. A good knowledge of linear algebra (including
eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector
spaces) is presupposed, as well as some acquaintance with the methods of
abstract algebra. The first four chapters might well be read by a bright
undergraduate; however, the remaining three chapters are admittedly a little
more demanding.

Besides being useful in many parts of mathematics and physics, the
theory of semisimple Lie algebras is inherently attractive, combining as it
does a certain amount of depth and a satisfying degree of completeness in its
basic results. Since Jacobson’s book appeared a decade ago, improvements
have been made even in the classical parts of the theory. I have tried to incor-
porate some of them here and to provide easier access to the subject for
non-specialists. For the specialist, the following features should be noted:

(1) The Jordan-Chevalley decomposition of linear transformations is
emphasized, with *“‘toral” subalgebras replacing the more traditional Cartan
subalgebras in the semisimple case.

(2) The conjugacy theorem for Cartan subalgebras is proved (following
D.J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding
the use of algebraic geometry.

(3) The isomorphism theorem is proved first in an elementary way
(Theorem 14.2), but later obtained again as a corollary of Serre’s Theorem
(18.3), which gives a presentation by generators and relations.

(4) From the outset, the simple algebras of types A, B, C, D are empha-
sized in the text and exercises.

(5) Root systems are treated axiomatically (Chapter III), along with
some of the theory of weights. -

(6) A conceptual approach to Weyl’s character formula, based on
Harish-Chandra’s theory of ‘“‘characters” and independent of Freudenthal's
multiplicity formula (22.3), is presented in §23 and §24. This is inspired by
D.-N. Verma’s thesis, and recent work of I. N. Bernstein, I. M. Gel'fand,
S. I. Gel'fand.

(7) The basic constructions in the theory of Chevalley groups are given
in Chapter VII, following lecture notes of R. Steinberg.

I have had to omit many standard topics (most of which I feel are better
suited to a second course), e.g., cohomology, theorems of Levi and Mal’cev,
theorems of Ado and Iwasawa, classification over non-algebraically closed
fields, Lie algebras in prime characteristic. I hope the reader will be stimu-
lated to pursue these topics in the books and articles listed under References,
especially Jacobson [1], Bourbaki [1], [2], Winter [1], Seligman [1].

v



Preface

A few words about mechanics: Terminology is mostly traditional, and
notation has been kept to a minimum, to facilitate skipping back and forth
in the text. After Chapters I-I1I, the remaining chapters can be read in
almost any order if the reader is willing to follow up a few references (except
that VII depends on §20 and §21, while VI depends on §17). A reference to
Theorem 14.2 indicates the (unique) theorem in subsection 14.2 (of §l4).
Notes following some sections indicate nonstandard sources or further
reading, but 1 have not tried to give a history of each theorem (for historical
remarks, cf. Bourbaki [2] and Freudenthal-deVries [1]). The reference list
consists largely of items mentioned explicitly; for more extensive biblio-
graphies, consult Jacobson [l], Seligman [l]. Some 240 exercises, of all
shades of difficulty, have been included; a few of the easier ones are needed
in the text.

This text grew out of lectures which 1 gave at the N.S.F. Advanced Science
Seminar on Algebraic Groups at Bowdoin College in 1968; my intention
then was to enlarge on J.-P. Serre’s excellent but incomplete lecture notes [2].
My other literary debts (to the books and lecture notes of N. Bourbaki,
N. Jacobson, R. Steinberg, D. J. Winter, and others) will be obvious. Less
obvious is my personal debt to my teachers, George Seligman and Nathan
Jacobson, who first aroused my interest in Lie algebras. I am grateful to
David J. Winter for giving me pre-publication access to his book, to Robert
L. Wilson for making many helpful criticisms of an earlier version of the
manuscript, to Connie Engle for her help in preparing the final manuscript,
and to Michael J. DeRise for moral support. Financial assistance from the
Courant Institute of Mathematical Sciences and the National Science
Foundation is also gratefully acknowledged.

New York, April 4, 1972 J. E. Humphreys
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Notation and Conventions

Z, 2+, Q, R, C denote (respectively) the integers, nonnegative integers,
rationals, reals, and complex numbers

U denotes direct sum of vector spaces

A o< B denotes the semidirect product of groups 4 and B, with B normal

Card = cardinality Ker = kernel
char = characteristic Im = image
det = determinant Tr = trace

dim = dimension
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Chapter 1

Basic Concepts

In this chapter F denotes an arbitrary (commutative) field.

1. Definitions and first examples

1.1, The notion of Lie algebra

Lie algebras arise “in nature’ as vector spaces of linear transformations
endowed with a new operation which is in general neither commutative nor
associative: [x, y] = xy— yx (where the operations on the right side are the
usual ones). 1t is possible to describe this kind of system abstractly in a few

axioms.

Definition. A vector space L over a field F, with an operation Lx L — L,
denoted (x, y) + [xy] and called the bracket or commutator of x and y, is
called a Lie algebra over F if the following axioms are satisfied:

(L1) The bracket operation is bilinear.
(L2) [xx] = Oforall xin L.
(L3) [xlyzll+zxl+1z2lxy]l = O (x, y, z€ ).

Axiom (L3) is called the Jacobi identity. Notice that (L1) and (L2), applied
to [x+y, x+y), imply anticommutativity: (L2') [xy] = —[yx]. (Conversely,
if char F # 2, it is clear that (L2") will imply (L2).)

We say that two Lie algebras L, L’ over F are isomorphic if there exists
a vector space isomorphism ¢: L — L’ satisfying ¢([xy]) = [¢(x)¢())] for
all x, y in L (and then ¢ is called an isomorphism of Lie algebras). Similarly,
it is obvious how to define the notion of (Lie) subalgebra of L: A subspace
K of L is called a subalgebra if [xy] € K whenever x, y € K; in particular,
K is a Lie algebra in its own right relative to the inherited operations. Note
that any nonzero element x e L defines a one dimensional subalgebra Fx,
with trivial multiplication, because of (L2).

In this book we shall be concerned almost exclusively with Lie algebras
L whose underlying vector space is finite dimensional over F. This will always
be assumed, unless otherwise stated. We hasten to point out, however, that
certain infinite dimensional vector spaces and associative algebras over F
will play a vital role in the study of representations (Chapters V-VII). We
also mention, before looking at some concrete examples, that the axioms for
a Lie algebra make perfectly good sense if L is only assumed to be a module
over a commutative ring, but we shall not pursue this point of view here.

1



2 Basic Concepts *

1.2. Linear Lie algebras

If ¥ is a finite dimensional vector space over F, denote by End V the set
of linear transformations ¥ — V. As a vector space over F, End V has dimen-
sion n* (n = dim V), and End V is a ring relative to the usual product
operation. Define a new operation [x, y] = xy—yx, called the bracket of
x and y. With this operation End V becomes a Lie algebra over F: axioms
(L1) and (L2) are immediate, while (L3) requires a brief calculation (which
the reader is urged to carry out at this point). In order to distinguish this new
algebra structure from the old associative one, we write gl(V) for End V
viewed as Lie algebra and call it the general linear algebra (because it is
closely associated with the general linear group GL(V) consisting of all in-
vertible endomorphisms of V). When V is infinite dimensional, we shall also
use the notation gI(¥) without further comment.

Any subalgebra of a Lie algebra gl(}) is called a linear Lie algebra. The
reader who finds matrices more congenial than linear transformations may
prefer to fix a basis for V, thereby identifying gl(¥) with the set of all nxn
matrices over F, denoted gl (n, F). This procedure is harmless, and very
convenient for making explicit calculations. For reference, we write down
the multiplication table for gl (n, F) relative to the standard basis consisting
of the matrices e;; (having 1 in the (i, j) position and 0 elsewhere). Since
e;;e, = 8,6, it follows that:

™ [eijs el = 3,-:: e —3; €y

Notice that the coefficients are all +1 or 0; in particular, all of them lie in
the prime field of F.

Now for some further examples, which are central to the theory we are
going to develop in this book. They fall into four families A,, B,, C,, D,
(£ = 1) and are called the classical algebras (because they correspond to
certain classical linear Lie groups). For B,—D,, let char F # 2.

A;: Let dim ¥V = £+ 1. Denote by sl(V), or sI(£+1, F), the set of endo-
morphisms of V having trace zero. (Recall that the trace of a matrix is the
sum of its diagonal entries; this is independent of choice of basis for v,
hence makes sense for an endomorphism of V.) Since Tr(xy) = Tr(yx),
and Tr(x+y) = Tr(x)+ Tr(y), sl(V) is a subalgebra of gl(¥), called the
special linear algebra because of its connection with the special linear group
SL(V) of endomorphisms of det 1. What is its dimension? On the one and
sl(V) is a proper subalgebra of gl(¥), hence of dimension at most (+1)*-1.
On the other hand, we can exhibit this number of linearly independent
matrices of trace zero: Take all e;; (i # j), along with all 4, = e/~ e, ;.4
(I =i <), for a total of £+(£+1)>—(/+1) matrices. We shall always
view this as the standard basis for sI(£+ 1, F).

C;: Let dim V = 2/, with basis (v,, ..., v;,). Define a nondegenerate
01

] 0) . (It can be shown
—

skew-symmetric form f on ¥ by the matrix s = (



1.2. Linear Lie algebras 3

that even dimensionality is a necessary condition for existence of a non-
degenerate bilinear form satisfying f(», w) = —f(w, v).) Denote by sp(¥),
or sp(24, F), the sympiectic algebra, which by definition consists of all endo-
morphisms x of V satisfying f(x(v), w) = —f(v, x(w)). The reader can easily
verify that sp(V) is closed under the bracket operation. In matrix terms, the

condition for x = (;n ;') (m, n, p, g € gl(/, F)) to be symplectic is that
sx = —x's (x' = transpose of x), i.e., that n* = n, p' = p, and m* = —q.

(This last condition forces Tr(x) = 0.) It is easy now to compute a basis
for sp(2/, F). Take the diagonal matrices e;—e,.,,,; (I < i < /),
£ in all. Add to these all ¢;—e,,;,4+; (1 <i#j < {), ¢*~/ in number.
For n we use the matrices €, ,,, (1 < i< /)and e;,,;+€;,,;, (1 <i<j
< /), atotal of £+ 4 /(£—1), and similarly for the positions in p. Adding up,
we find dim sp(27, F) = 2/%+/.

B,: Let dim V = 2/+1 be odd, and take f to be the nondegenerate sym-

100
metric bilinear form on ¥ whose matrix is s = (O 0 I,) . The orthogonal
01,0
algebra o(¥), or 0(2/+1, F), consists of all endomorphisms of V satisfying
f(x(v), w) = —f(v, x(w)) (the same requirement as for C,). If we partition x in
a b, b,
the same form as s, say x = (cl mn ) , then the condition sx = —x's
2P 4
translates into the following set of conditions: a = 0, ¢, = —b}, ¢, = -~ b,
g= —m',n" = —n, p' = —p. (As in the case of C,, this shows that Tr(x)
= 0.) For a basis, take first the £ diagonal matrices i~ i (2<i <
£+1). Add the 2/ matrices involving “only row one and column one:
Creviv1~€+q, and e ;i —e€i4q,r (1 <P < 7). Corresponding to
g = —m', take (as for C)) €ivi,j+1~Cusjrr1evi+ey (1 Si#j< ). For
ntake €.y vje1~€4y, 00000 (1 Si<j< ), and for P Civevn jer—
€4s+1,1+41 (1 £j < i < £). The total number of basis elements is 2£2 + ¢
(notice that this was also the dimension of C,).

D/ >2: Here we obtain another orthogonal algebra. The construction is
identical to that for B,, except that dim ¥ = 2Zis even and s has the simpler
form (0 L

I, 0
and to verify that dim 0(24, F) = 2/2 — ¢ (Exercise 8).

We conclude this subsection by mentioning several other subalgebras of
gKn, F) which play an important subsidiary role for us. Let t(n, F) be the set
of upper triangular matrices (a,;), a,; = 0if i > j. Let n(n, F) be the strictly
upper triangular matrices (a,; = 0 if i > j). Finally, let d(n, F) be the set of
all diagonal matrices. It is trivial to check that each of these is closed under
the bracket. Notice also that t(n, F) = d(n, F)+ n(n, F) (vector space direct
sum), with [d(n, F), n(n, F)} = n(n, F), hence [t(n, F), t(n, F)] = n(n, F), cf.
Exercise 5. (If H, K are subalgebras of L, [H K] denotes the subspace of L
spanned by commutators [xy], x € H, y € K.)

) . We leave it as an exercise for the reader to construct a basis



4 Basic Concepts

1.3. Lie algebras of derivations

Some Lie algebras of linear transformations arise most naturally as
derivations of algebras. By an F-algebra (not necessarily associative) we
simply mean a vector space W over F endowed with a bilinear operation
Ax A — A, usually denoted by juxtaposition (unless U is a Lie algebra, in
which case we always use the bracket). By a derivation of ) we mean a linear
map §: A — U satisfying the familiar product rule 8(ab) = ad(b) + 8(a)b. 1t
is easily checked that the collection Der U of all derivations of U is a vector
subspace of End . The reader should also verify that the commutator
[3, &°] of two derivations is again a derivation (though the ordinary product
need not be, cf. Exercise 11). So Der U is a subalgebra of gl( ).

Since a Lie algebra L is an F-algebra in the above sense, Der L is defined.
Certain derivations arise quite naturally, as follows. If x € L, y — [xy] is an
endomorphism of L, which we denote ad x. In fact, ad x € Der L, because
we can rewrite the Jacobi identity (using (£2')) in the form: [x{yz]] = [[xy]z]
+[y[xz]). Derivations of this form are called inner, all others outer. 1t is of
course perfectly possible to have ad x = 0 even when x s 0: this occurs
in any one dimensional Lie algebra, for example. The map L — Der L
sending x to ad x is called the adjoint representation of L; it plays a decisive
role in all that follows. ' ’

Sometimes we have occasion to view x simultaneously as an element of
L and of a subalgebra K of L. To avoid ambiguity, the notation ad,x or
adgx will be used to indicate that x is acting on L (respectively, X). For
example, if x is a diagonal matrix, then ad,, ;, (x) = 0, whereas ad ¢, ;y(X)
need not be zero.

1.4. Abstract Lie algebras

We have looked at some natural examples of linear Lie algebras. It is
known that, in fact, every (finite dimensional) Lie algebra is isomorphic to
some linear Lie algebra (theorems of Ado, Iwasawa). This will not be proved
here (cf. Jacobson [I] Chapter VI, or Bourbaki [1]); however, it will be
obvious at an early stage of the theory that the result is true for all cases we
are interested in.

Sometimes it is desirable, however, to contemplate Lie algebras abstractly.
For example, if L is an arbitrary finite dimensional vector space over F, we
can view L as a Lie algebra by setting [xy] = 0 for all x, yeL. Such an
algebra, having trivial Lie multiplication, is called abelian (because in the
linear case [x, y] = O just means that x and y commute). If L is any Lie
algebra, with basis x,, ..., x, it is clear that the entire multiplication table
of L can be recovered from the structure constants a% which occur in the

expressions [x;x;] = ) aix,. Those for which i > j can even be deduced
k=1

from the others, thanks to (L2), (L2'). Turning this remark around, it is
possible to define an abstract Lie algebra from scratch simply by specifying



1.4. Abstract Lie algebras s

a set of structure constants. Naturally, not just any set of scalars {a,’j} will
do, but a moment’s thought shows that it is enough to require the “‘obvious”
identities, those implied by (L2) and (L3):

ke ok k.
a;=0=a;+a;

is
Y. (atal, +aflal’:;+a’;ia;;‘) = 0.

k

In practice, we shall have no occasion to construct Lie algebras in this
artificial way. But, as an application of the abstract point of view, we can
determine (up to isomorphism) all Lie algebras of dimension <2. In dimen-
sion 1 there is a single basis vector x, with multiplication table [xx] = 0 (L2).
In dimension 2, start with a basis x, y of L. Clearly, all products in L yield
scalar multiples of [xy]. If these are all O, then L is abelian. Otherwise, we
can replace x in the basis by a vector spanning the one dimensional space
of multiples of the original [xy], and take y to be any other vector independent
of the new x. Then [xy] = ax (a # 0). Replacing y by a~ 'y, we finally get
[xy] = x. Abstractly, therefore, at most one nonabelian L exists (the reader
should check that [xy] = x actually defines a Lie algebra).

Exercises

1. Let L be the real vector space R3. Define [xy] = x x y (cross product of
vectors) for x, y € L, and verify that L is a Lie algebra. Write down the
structure constants relative to the usual basis of R3.

2. Verify that the following equations and those implied by (L1) (L2)
define a Lie algebra structure on a three dimensional vector space with
basis (x, y, 2): [xy] = z, [xz] = y, [yz] = 0.

3. Let x = (g (l)) s h= ((l) —(l)) y ¥y = ((l) g) be an or@ered basis for
s1(2, F). Compute the matrices of ad x, ad A, ad y relative to this basis.

4. Find a linear Lie algebra isomorphic to the nonabelian two dimensional
algebra constructed in (1.4). [Hint: Look at the adjoint representation.]

5. Verify the assertions made in (1.2) about t(n, F), d(n, F), n(n, F), and
compute the dimension of each algebra, by exhibiting bases.

6. Let x e gl(n, F) have n distinct eigenvalues a,, . . ., a, in F. Prove that
the eigenvalues of ad x are precisely the n? scalars a,—a; (1 <i,j<n),
which of course need not be distinct. i

7. Let s(n, F) denote the scalar matrices (=scalar multiples of the identity)

in gl(n, F). If char F is O or else a prime not dividing n, prove that
gl(n, F) = sl(n, F)+s(n, F) (direct sum of vector spaces), with [s(n, F),
gl(n, B} = 0.

- Verify the stated dimension of D,.

9. When char F = 0, show that each classical algebra L = A, B,,C,, or D,
is equal to [LL). (This shows again that each algebra consists of trace 0
matrices.) :

oo



6 Basic Concepts

10. For small values of /, isomorphisms occur among certain of the classical
algebras. Show that A,, B,, C, are all isomorphic, while D, is the one
dimensional Lie algebra. Show that B, is isomorphic to C,, D; to A;.
What can you say about D,?

1. Verify that the commutator of two derivations of an F-algebra is again
a derivation, whereas the ordinary product need not be.

12. Let L be a Lie algebra and let x € L. Prove that the subspace of L spanned
by the eigenvectors of ad x is a subalgebra.

2. Ideals and homomorphisms

2.1. HMeals

" A subspace / of a Lie algebra L is called an ideal of L if xeL, yel
together imply [xy] € /. (Since [xy] = —[px], the condition could just as well
be written: [yx] € /.) ldeals play the role in Lie algebra theory which is
played by normal subgroups in group theory and by two sided ideals in ring
theory: they arise as kernels of homomorphisms (2.2).

Obviously 0 (the subspace consisting only of the zero vector) and L
itself are ideals of L. A less trivial example is the center Z(L) = {z ¢ Lj[xz} =
0 for all x € L}. Notice that L is abelian if and only if Z(L)= L. Another
important example is the derived algebra of L, denoted [LL), which is
analogous to the commutator subgroup of a group. It consists of all linear
combinations of commutators [ xy], and is clearly an ideal.

Evidently L is abelian if and only if [LL] = 0. At the other extreme, a
study of the multiplication table for L = si(n, F) in (1.2) (n # 2 if char
F = 2) shows that L = [LL] in this case, and similarly for other classical
linear Lie algebras (Exercise 1.9).

If 1, J are two ideals of a Lie algebra L, then /+J = {x+y|xe/, ye J}
is also an ideal. Similarly, [/J] = {X x,p.x; e [, y, € J} is an ideal ; the derived
algebra [LL] is just a special case of this construction.

It is natural to analyze the structure of a Lie algebra by looking at its
ideals. If L has no ideals except itself and 0, and if moreover [LL) # 0, we
call L simple. The condition [LL] # O (i.e., L nonabelian) is imposed in
order to avoid giving undue prominence to the one dimensional algebra.
Clearly, L simple implies Z(L) = 0 and L = [LL].

Example. Let L = sl(2, F), char F # 2. Take as standard basis for L the

three matrices (cf. (1.2)): x = (0 l) , Y= (0 O) ,h= (l 0). The multi-
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plication table is then completely determined by the equations: [xy] = h,
[hx] = 2x, [hy] = —2y. (Notice that x, y, & are eigenvectors for ad A, corres-

ponding to the eigenvalues 2, —2, 0. Since char F # 2, these eigenvalues are
distinct.) If 7 # 0 is an ideal of L, let ax+by+ch be an arbitrary nonzero



