VOLUME TWO MEDICAL PHYSIOLOGY

FOURTEENTH EDITION

Edited by

Vernon B. Mountcastle, M.D.

VOLUME TWO

MEDICAL PHYSIOLOGY

1,123

Edited by

VERNON B. MOUNTCASTLE, M.D.

Professor and Director, Department of Physiology
The Johns Hopkins University
Baltimore, Maryland

FOURTEENTH EDITION.

with 1668 illustrations

The C. V. Mosby Company

ST. LOUIS . TORONTO . LONDON

1980

FOURTEENTH EDITION

Copyright © 1980 by The C. V. Mosby Company

All rights reserved. No part of this book may be reproduced in any manner without written permission of the publisher.

Previous editions copyrighted 1918, 1919, 1920, 1922, 1926, 1930, 1935, 1938, 1941, 1956, 1961, 1968, 1974

Printed in the United States of America

The C. V. Mosby Company 11830 Westline Industrial Drive, St. Louis, Missouri 63141

Library of Congress Cataloging in Publication Data

Mountcastle, Vernon B Medical physiology.

> Bibliography: p. Includes index.

1. Human physiology. I. Title. 612

QP34.5.M76 1980 ISBN 0-8016-3560-8

Contributors

G. D. AURBACH

National Institutes of Health Bethesda, Maryland

LLOYD M. BEIDLER

Florida State University Tallahassee, Florida

JOHN D. BIGGERS

Harvard University Boston, Massachusetts

F. J. BRINLEY, Jr.

National Institutes of Health Bethesda, Maryland

JOHN R. BROBECK

University of Pennsylvania Philadelphia, Pennsylvania

CHANDLER M. BROOKS

State University of New York Brooklyn, New York

KENNETH T. BROWN

University of California San Francisco, California

C. LOCKARD CONLEY

The Johns Hopkins University Baltimore, Maryland

ROBERT D. DeVOE

The Johns Hopkins University Baltimore, Maryland

ROBERT M. DOWBEN

The University of Texas Dallas, Texas

ARTHUR B. DuBOIS

Yale University
New Haven, Connecticut

NORMAN GESCHWIND

Harvard University Boston, Massachusetts

MOÏSE H. GOLDSTEIN, Jr.

The Johns Hopkins University Baltimore, Maryland

H. MAURICE GOODMAN

University of Massachusetts Worcester, Massachusetts

CARL W. GOTTSCHALK

University of North Carolina at Chapel Hill Chapel Hill, North Carolina

JAMES D. HARDY

Yale University New Haven, Connecticut

DALE A. HARRIS

Harvard University Boston, Massachusetts

THOMAS R. HENDRIX

The Johns Hopkins University Baltimore, Maryland

ELWOOD HENNEMAN

Harvard University Boston, Massachusetts

JAMES C. HOUK

Northwestern University Chicago, Illinois

vi Contributors

KIYOMI KOIZUMI

State University of New York Brooklyn, New York

CHRISTIAN J. LAMBERTSEN

University of Pennsylvania Philadelphia, Pennsylvania

WILLIAM E. LASSITER

University of North Carolina at Chapel Hill Chapel Hill, North Carolina

PETER C. MALONEY

The Johns Hopkins University Baltimore, Maryland

JANICE W. MARAN

McNeil Laboratories Fort Washington, Pennsylvania

THOMAS H. MAREN

University of Florida Gainesville, Florida

DONALD J. MARSH

University of Southern California Los Angeles, California

JEAN M. MARSHALL

Brown University Providence, Rhode Island

LORNE M. MENDELL

Duke University Durham, North Carolina

WILLIAM R. MILNOR

The Johns Hopkins University Baltimore, Maryland

VERNON B. MOUNTCASTLE

The Johns Hopkins University Baltimore, Maryland

~~WILLIAM L. NASTUK

Columbia University New York, New York

BARRY W. PETERSON

Rockefeller University New York, New York

JAMES M. PHANG

National Institutes of Health Bethesda, Maryland

GIAN F. POGGIO

The Johns Hopkins University Baltimore, Maryland

SID ROBINSON

Indiana University Bloomington, Indiana

ANTONIO SASTRE

The Johns Hopkins University Baltimore, Maryland

W. T. THACH, Jr.

Washington University St. Louis, Missouri

PAOLA S. TIMIRAS

University of California at Berkeley Berkeley, California

LESTER VAN MIDDLESWORTH

The University of Tennessee Memphis, Tennessee

GERHARD WERNER

University of Pittsburgh Pittsburgh, Pennsylvania

GERALD WESTHEIMER

University of California at Berkeley Berkeley, California

VICTOR J. WILSON

Rockefeller University New York, New York

F. EUGENE YATES

University of Southerr California Los Angeles, California

Preface

TO FOURTEENTH EDITION

The general principles by which this textbook is organized remain those described in the preface to its twelfth edition, namely, to present mammalian physiology as an independent biologic discipline as well as a basic medical science. Two new sections appear in this edition, the first on the principles of system theory as applied to physiology and the second on the physiology of development and aging. Sixty-five chapters of the present edition either are wholly new (ten) or have been extensively revised (fifty-five); twelve chapters remain essentially as they appeared in the thirteenth edition.

This edition has been written by forty-five authors, of whom twelve have joined this effort

for the first time. Forty-one of these writers are continually engaged in research and teaching in physiology. Each has taken time from that dedicated life to summarize here the present state of knowledge in a particular field of interest. Whatever value this book possesses is wholly due to the contributors' depth of understanding, skill of exposition, and devotion to the task. For this I am indebted to each.

For them and for myself I wish to thank those authors and publishers who have allowed us to reproduce illustrations previously published elsewhere.

Vernon B. Mountcastle

Preface

TO TWELFTH EDITION

The twelfth edition of Medical Physiology presents a cross section of knowledge of the physiologic sciences, as viewed by a group of thirty-one individuals, twenty-three of whom are actively engaged in physiologic research and teaching. Each section of the book provides statements of the central core of information in a particular field of physiology, reflecting, by virtue of the daily occupations of its authors, the questioning and explorative attitude of the investigator and indeed some of the excitement of the search. These statements vary along a continuum from those with a high probability for continuing certainty to those that are speculative but, it is hoped, of heuristic value. An attempt has been made to maintain a balanced point of view. I hope this book will convey to the student who reads it the fact that physiology is a living and changing science, continuously perfecting its basic propositions and laws in the light of new discoveries that permit new conceptual advances. The student should retain for himself a questioning attitude toward all, for commonly the most important advances are made when young investigators doubt those statements others have come to regard as absolutely true. This is not a book that sets forth in stately order a series of facts which, if learned, will be considered adequate for success in a course in physiology. Many such "facts" are likely to be obsolete before the student of physiology reaches the research laboratory, or the student of medicine the bedside. Nor is it a book that provides ready-made correlations and integrations of the various fields of physiology necessary for a comprehensive understanding of bodily function. Those integrations are an essential part of scholarly endeavor not readily gained from books alone. It is my hope, however, that study of this book, combined with laboratory experience and scholarly reflection, will provide the student with a method and an attitude that will serve him long after the concepts presented here are replaced by new and more cogent ones.

The title Medical Physiology has been retained, for one of the purposes of this edition, in common with earlier ones, is "to present that part of physiology which is of special concern to the medical student, the practitioner of medicine, and the medical scientist in terms of the experimental inquiries that have led to our present state of knowledge." The scope of the book was and is still broader, however, and attempts to present mammalian physiology as an independent biologic discipline as well as a basic medical science. Mammalian physiology has its base in cellular physiology and biophysics, and it is from this point of view that many of the subjects treated here are approached. Above all, mammalian physiology must deal with problems of, the interactions between large populations of cells, organs, and organ systems and, finally, the integrated function of an entire animal. Physiology thus must bridge the distance from cellular biology on the one hand to systems analysis and control theory on the other: each is important and any one is incomplete without the others. This approach to the problems of internal homeostasis, of reaction to the environment, and of action upon the environment is evidenced in several sections of this book.

Of the eighty chapters composing this book, twenty-nine are wholly new in this edition; forty-five from the last edition have been extensively revised either by their original authors or by new ones. Six have been allowed to stand substantially as previously written, for these seemed to comprise as balanced and modern a survey as any presently possible. The names and affiliations of my colleagues in this effort have been

x Preface to twelfth edition

listed. They have taken time from busy lives to survey their fields of interest; for this I am greatly indebted to each. If this book possesses any worth it is in large part due to their continuing devotion to the task of its preparation.

For them and for myself I wish to thank those authors and publishers who have allowed us to reproduce illustrations previously published elsewhere.

Vernon B. Mountcastle

Contents

VOLUME ONE

Part I

Cellular physiology

- 1 Principles of cell homeostasis, 3
 Robert D. DeVoe and Peter C. Maloney
- Excitation and conduction in nerve fibers, 46F. J. Brinley, Jr.
- 3 Contractility, with special reference to skeletal muscle, 82

 Robert M. Dowben
- 4 Vertebrate smooth muscle, 120

 Jean M. Marshall

Part II

The biology of nerve cells

- 5 Neuromuscular transmission, 151 William L. Nestuk
- 6 Synaptic transmission, 184

 Vernon B. Mountcastle and Antonio Sastre

Part III

Principles of system theory as applied to physiology

- 7 Systems and models, 227
 James C. Houk
- 8 Homeostasis and control principles, 246

 James C. Houk

Part IV

General physiology of the forebrain

9 Functional organization of thalamus and cortex, 271

Gian F. Poggio and Vernon B. Mountcastle

10 Sleep, wakefulness, and the conscious state: intrinsic regulatory mechanisms of the brain, 299

Vernon B. Mountcastle

Part V

Central nervous mechanisms in sensation

- 11 Sensory receptors and neural encoding: introduction to sensory processes, 327

 Vernon B. Mountcastle
- 12 Neural mechanisms in somesthesis, 348
 Vernon B. Mountcastle
- 13 Pain and temperature sensibilities, 391
 Vernon B. Mountcastle
- 14 The auditory periphery, 428 Moise H. Goldstein, Jr.
- 15 Central nervous mechanisms in hearing, 457
 Vernon B. Mountcastle
- 16 The eye, including central nervous system control of eye movements, 481

 Gerald Westhelmer
- 17 Physiology of the retina, 304 Kenneth T. Brown
- 18 Central neural mechanisms in vision, 544
 Glan F. Pogglo
- 19 The chemical senses: gustation and olfaction, 586
 Lloyd M. Beidler

Part VI

Some aspects of higher nervous function

- 20 The study of sensation in physiology: psychophysical and neurophysiologic correlations, 605
 Gerhard Werner
- 21 Higher functions of the nervous system, 629
 Gerhard Werner
- 22 Some special functions of the human brain: dominance, language, apraxia, memory, and attention, 647
 Norman Geschwind

Part VII

Neural control of posture and movement

- 23 Organization of the motor systems: a preview, 669

 Elwood Henneman
- 24 Skeletal muscle: the servant of the nervous system, 674

 Elwood Henneman
- **25** Feedback signals from muscle and their efferent control, 703

Dale A. Harris and Elwood Henneman

- Organization of the motoneuron pool: the size principle, 718Elwood Hanneman
- 27 Input to motoneuron pools and its effects, 742

 Lorne M. Mendell and Elwood Henneman
- **28** Organization of the spinal cord and its reflexes, 762

Elwood Henneman

- 29 Motor functions of the brain stem and basal ganglia, 787

 Elwood Henneman
- 30 The role of the vestibular system in posture and movement, 813
 Victor J. Wilson and Barry W. Peterson
- 31 The cerebellum, 837 W. T. Thach, Jr.

32 Motor functions of the cerebral cortex, 859
Elwood Henneman

Part VIII

The autonomic nervous system, hypothalamus, and integration of body functions

- 33 The autonomic system and its role in controlling body functions, 893

 Kiyomi Koizumi and Chandler M. Brooks
- The hypothalamus and control of integrative processes, 923
 Chandler M. Brooks and Klyomi Kolzumi

VOLUME TWO

Part IX

The circulation

- 35 Cardiovascular system, 951 William R. Milnor
- 36 Properties of cardiac tissues, 961
 William R. Milnor
- The heart as a pump, 986 William R. Milnor
- 38 The electrocardiogram, 1007 William R. Milnor
- 39 Principles of hemodynamics, 1017
 William R. Milnor
- 40 Normal circulatory function, 1033
 William R. Milnor
- 41 Autonomic and peripheral control mechanisms, 1047
 William R. Milnor
- 42 The cardiovascular control system, 1061
 William R. Milnor
- 43 Capillaries and lymphatic vessels, 1085
 William R. Milnor
- 44 Regional circulations, 1094 William R. Milnor
- 45 Pulmonary circulation, 1108 William R. Milnor

- 46 Blood volume, 1118
 William R. Milnor
- 47 The blood, 1126 C. Lockard Conley
- 48 Hemostasis, 1137 C. Lockard Conley

Part X

The kidney and body fluids

- **49** Volume and composition of the body fluids, 1149
 - William E. Lassiter and Carl W. Gottschalk
- 50 Mechanisms of urine formation, 1165
 Carl W. Gottschalk and William E. Lassiter
- Urine formation in the diseased kidney, 1206
 William E. Lassiter and Carl W. Gottschalk
- 52 Cerebrospinal fluid, aqueous humor, and endolymph, 1218Thomas H. Maren

Part XI

Physiology of the digestive system

- 53 The absorptive function of the alimentary canal, 1255
 Thomas R. Hendrix
- The secretory function of the alimentary canal, 1289
 Thomas R. Hendrix
- 55 The motility of the alimentary canal, 1320
 Thomas R. Hendrix

Part XII

Metabolism

- 56 Energy exchange, 1351

 John R. Brobeck and Arthur B. DuBois
- 57 Energy balance and food intake, 1366
 John R. Brobeck
- 58 Physiology of muscular exercise, 1387
 Sid Robinson
- 59 Body temperature regulation, 1417

 James D. Hardy

Part XIII

Endocrine glands

- 60 Introduction to endocrinology, 1459
 H. Meurice Goodman
- 61 The pituitary gland, 1468
- 62 The thyroid gland, 1495
 H. Maurice Goodman and
 Lester Van Middlesworth
- Vitamin D, parathyroid hormone, and calcitonin, 1519G. D. Aurbach and James M. Phang
- The adrenal cortex, 1558
 F. Eugene Yates, Donald J. Marsh, and Janice W. Maran
- 65 Reproduction, 1602
 H. Maurice Goodman
- The pancreas and regulation of metabolism, 1638H. Maurice Goodman

Part XIV

Respiration

- 67 The lung: physical aspects of respiration, 1677
 Christian J. Lambertsen
- 68 Gas exchanges of the atmosphere with the lungs and blood, 1691

 Christian J. Lambertsen
- 69 Transport of oxygen, carbon dioxide, and inert gases by the blood, 1721

 Christian J. Lambertsen
- 70 Neural control of respiration, 1749
 Christian J. Lambertsen
- 71 Chemical control of respiration at rest, 1774
 Christian J. Lambertsen
- 72 Dyspnea and abnormal types of respiration, 1828
 Christian J. Lambertsen
- 73 Hypoxia, altitude, and acclimatization, 1843
 Christian J. Lambertsen

XIV Contents

- 74 Physical, chemical, and nervous interactions in respiratory control, 1873

 Christian J. Lambertson
- 75 Effects of excessive pressures of oxygen, nitrogen, helium, carbon dioxide, and carbon monoxide: implications in aerospace, undersea, and industrial environments, 1901

Christian J. Lambertsen

Part XV

The physiology of development and aging

- 76 Fetal and neonatal physiology, 1947
 John D. Biggers
- 77 Physiology of aging, 1986
 Paola S. Timiras