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1. INTRODUCTION. In this paper a study is made of open mappings of one
locally connected gemeralized continuum onto open subsets of another such space
along lines suggested by certain fundamental properties of analytic functions
of a complex variable. The locally connected generalized continuum seems to
provide the appropriate setting for such a study for several reasons. In the
first place, the complex plane and its regions are locally connected general-
ized continua. Further, any region in a locally connected generalized continuum
is itself a space of the same sort. Finally, this type of space reproduces it-
self under open mappings since local connectedness and local compactness, al-
though not invariant under all continuous transformations, are invariant under
open ones. Since the mappings generated by analytic functions are open and map
regions onto regions open in the complex plane (See Stoilor [1]), the results
obtained in this setting are immediately applicable to analytic mappings.

We begin (Sections 3-H) with a discussion of the interiority (= openness)
and lightness f analytic mappings and some of its consequences such as the
Maximum Modulus Theorem, the Fundamental Theorem of algebra and other results
concerning zeros. This is followed (Section 6) by a study of the property of
expansibility of a mapping which is suggested by the property of certain en-
tire functions of having their minimum modulus go to infinity on an expanding
sequence of circles about the origin. Mappings having this property are charac-
terized by the preservation of non-compactness for closed generalized continua.
Further, when open they are necessarily onto mappings; and indeed, either they
take each value on a compact (non-empty) set or they take each value on a non-
compact set. Thus we get a partitioning of the expansive open mappings into
two classes corresponding to the division of entire functions into rationals
and transcendentals which reduces to precisely this classification in the case
of these functions. :

Next comes (Sections 7-10) a study of quasi-interiority and compactness
of mappings together with their composition and factorization properties and
their relation to monotoneity and quasi-monotoneity. A uniformly convergent se-
quence of quasi-interior mappings is shown to have a quasi-interior limit, thus
validating an analog of the Weierstrass Double Series Theorem. Results on in-
version of local connectedness under light open mappings are established (Sec-
tions 11-12) enabling us to determine the class of mappings for which there
exist arbitrarily large normal regions about any point. (Any light interior
mapping admits arbitrarily small normal regions about any point.)

The decomposition generated by an open mapping is considered next (Sec-
tions 13-14) and consequences of the continuity of such a decomposition are
applied to the multiplicity function. It is shown that under fairly general
conditions a mapping generating a continuous decomposition is either of finite
degree of else takes each of its values infinitely many times. Expansive map-
pings generate such decompositions as do also functions such as e? and cos z,
which are not expansive.

Finally (Sections 15-17) uniform interiority and uniform lightness for se-
quences and collections of mappings are investigated and some applications and
interpretations made in the case of analytic functions. In particular a certain
contact is established with the well known Bloch property.

2. DEFINITIONS. NOTATION. By a mapping we will always mean a continuous
single valued transformation f(x) of one topological space 4 into another one
Bo. The image of A will usually be called B so that we have f(4) = B < Bo.
By the inverse f~*(Y) of a subset Y of B, we mean the set of all x € 4 such
that f(x) e Y, whether Y is contained in B or not. Such a mapping is interior
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or open provided the image of every open set in 4 is open in B and is strongly
open provided the image of every open set in 4 is open in Bo. It will be noted
that an open mapping is strongly open if and only if B is opep in Bo. A mapping
f(4) = B is light provided f~*(y) is totally disconnected for each y e B.

The boundary J - U of an open set will be denoted by Fr (U). A region in
any space is a connected open set in that space. A continuum is a compact con-
nected metric space and a generalized continuum is a locally compact separable
metric connected space. In all cases we will be dealing with a metric space and
we use p(x,y) for the distance function and V,(X) for the spherical neighbor-
hood of the set X or radius r.

i ?;{ other terms and notations the reader is referred to the author's
00 .

3, INTERIORITY OF ANALYTIC FUNCTIONS. There are several known ways of
showing that the mapping generated by a non—constant function w = f(z) analytic
in a region R of the z plane into the w plane is strongly interior, (see
Stoilow [11), as this is a ready consequence of the basic properties of complex
integrals together with power series expandibility of the function. For example,
Rouché's Theorem together with the fact that the zeros of an analytic function
are isolated yields strong interiority as follows:

Let zo ¢ R and let C : |z - zo | = r be any circle lying with its interior
in R and such that f(z) # wo = f(zo) for z e C. Then if w, satisfies 0 < | w,

- wo | < plwo, F(C)], since | f(z) - wol > |wo -~ ws| on C, f(z) - wo and

f(z) - wo *+ Wo - Wy = f(z) - w1 have the same number of zeros inside C. Accord-
ingly f(z) takes the value w, within C so that the image of the interior of C
contains the region |w - wo | < plwo, F(C)].

Since strong interiority and lightness are the fundamental topological
properties of non-constant analytic functions, it seems highly desirable to es-
tablish them in as elementary a fashion as possible, using a minimum of analyti-
cal machinery. In particular, one would like to avoid basing the proof on the
complex integral and series expansibility and use only the existence but not
the continuity of the derivative. The author knows of no such proof nor is he
prepared as yet to offer any. Nevertheless, it may be of interest to indicate
two procedures which seem to isolate the difficulties involved in such a proof,
and this we proceed to do. In either of the methods suggested one can only ob-
tain lightness and strong interiority of non—-constant analytic functions as a
special case of the theorem established by invoking either countability of the
zeros of its derivative or the fact that each such zero is of finite order.

We first prove a theorem by direct elementary methods which yields the de-
sired properties for classes of functions including the non-constant analytic
ones if we invoke the properties just mentioned of such functions but which
does not require a derivative and includes also functions such as w = Z. This
is accomplished by application of a lemma which we establish first.

(3.1) Lemma. Suppose w = f(z) continuous in a region R of the complex
plane and that for a éiven zo € R there exist an integer n > 0 and a real num-
ber « # O such that if z - 2o = re®, w - wo = pe’?, (wo = fizs)), then or™"
is bounded from O for r sufficiently small and lim ¢ = 9¢ uniformly in © and

r > 0, 6 = constant .
for any two values 6, and 6, of 6, %o, ~ 99, = a(B, - B,). Then every linear
interval containing w, intersects the f image of any disc by « 254 S ry lnd
point distinct from we.

Froof. Let S be any disc |z - zol £ ry lying in R and let I: ¢ = o/,

0 £p S p' be any interval with one end point at wo. Let 9o = lim ¢ for any
r-= 0, 6=60

fixed 8,. Defineifp, & = 1, 2, by the equation
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a (Br'— 6o) = ! - g0 *+ (<1)*9,

1, 2, we have

Then from our hypothesis, if ¢, = lim o, k&
>0 O

X
D
non

Qs — P = 0@ (01 — Bo) 9! — 9o — /9
p! — /9 .

9! + nt/9 .

or Q4

Similarly P

We may now assume, in view of our hypothesis, that the radius ry of S is
small enough so that if r £ ri, then
(1) p<p', pr™>d >0, and | 9 - 99| < n/9 for any 6. Define C to be the
short arc of the boundary of S joining z, and z, where z, - 2o = "1 e' %,
R=1,2 Then if z € C, z - 2o = 1 €*®, f(z) - wo = pe'?, we have
ICP—q’el(n/g.
Also, assuming |z -z | $ |z - z2 |,

log =l =tal 18 -~0 )} S4lal [6,-0:173 | 92 = @2 | = ®/9;
and since | 9, — @' | = n/9, we get
(2) le-9'l < /3.
The same conclusion would follow similarly if |z - z.| S |1z - z. |. Thus

f(z) - wo = pet? satisfies (1) and (2) so that f(z) and hence f(C) lies in
the part W of the annulus defined by

puliiziipl e gt |QJ-—QJ’I<T(/8.

Now I bisects this region W; and since the argument of f(z) differs from g
by less than n/9, k = 1, 2, it follows that f(z,) and f(z.) lie on opposite
sides of I in W. Since f(C) is connected it must intersect I in a point # Wo.

Note. If f'(zo) exists and is # O, the hypothesis in this lemma is satis-
fied with n = a = 1. If f’(z) exists in R but z, is a zero of order k of f'(z),
the hypothesis is satisfied with n = « = B + 1, Also it will be noted that the
conditions are satisfied at any point z, in the z plane by the function w = Z
with n = 1, a = -1.

(3.2) Theorem. Ifs the function w = f(z) satisfies the conditions of (3.1)
at every point zo in R, then f is light and strongly interior on R. Further,

all points of f‘l(w), w e f(R), are isolated points of this set.

The latter statement, and thus the lightness of f, is an immediate conse-
quence of the condition that for any zo ¢ R, pr~" is bounded from zero and
hence not equal to zero for r # O and sufficiently small.

To establish strong interiority, let z, € R and choose a disc S centered
at zo, so that S =R and f(z) # wo = f(z5) on S - zo. let F = f [(Fr(S)], and
let U be the interior of a circle centered at wo which contains no point of F.
Then U < f(S). For if U contained a point w, not in f(S), the segment w, w,
has a first point w, in f(S) in the order w,, w,. Then w, = f(z,) for some in-
terior point z, of S, since U * F = 0; and this is impossible by (3.1) since
the segment w, w, intersects f(S) in just w,.

Our second method is based on the fact that at a point z, € R where f'(zo)
exists and is # O the conditions in the lemma (3.1) are readily established
for n = a = 1 using only the definition of derivative (See Titchmarsh [3] for
example) . This gives us a property very close to strong interiority at such
points z,. Indeed, if we assume existence of f'(z) and countability of its
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zeros in R, we get strong interiority on the complement of these zeros and
lightness of the mapping in a completely elementary way. It is then possible 3
to employ the following general extemsibility theorem to obtain strong interi-
ority on the whole region R.

(3.3) Theorem. (Extensibility) Let A and B, be locally connected general-
ized continua such that no redion in A or B, is separated by any compact totally
disconnected set. Let f(4) = B =B, be light and suppose there is a set F in 4
such that both E and f(E) are punctiform* and f is strongly interior on 4 - F.
Then f is strongly interior on A. -

Proof. Let a ¢ E and let U be an open set containing a such that U is com-
pact and f[Fr(U)] does not contain f(a). This last condition is possible since
the transformation f is light.

Since f(a) is not on f[Fr(U)], we can find a region R «=B, such that
fla) ¢ R, R * fIFr(v)] = 0, and B is compact. It is sufficient to prove that
f(U) contains R. If we define ¥ = R - R * f(U" E), then we wish to show that
W <=f(U). To show this we note that ¥ is connected; for if f(U * E) separated
the region R, it would be possible to find a subset of f(U* E) closed in R
which separates B. This would contradict the fact that there exists no compact
totally disconnected set which separates any region in Bo. Obviously W * f(U)

# 0. Moreover, ¥ * f(U) is open in W. For consider y ¢ ¥ such that f~1(y) in-
tersects U. Then there exists an x € U - E such that f(x) = y and by hypothesis
f is strongly interior on the set U - E. We also have that ¥ ° f(U) is closed
in W. For consider any point z € W which is a limit point of ¥ * f(U) =

(R-R - f(U*E)] F(U). Then z is in f(T) = 7(U) and in R. Hence z e f(U) since
R * f(Fr(U)] = 0. Accordingly ¥ * f(U) = W =f(U). Finally f(U) = R, for all
points we have deleted are images of points of U * F.

(3.31) Corollary. If A and B, are planes (or manifolds of dimension )
and the light mapping f of A into B is strongly interior on A - E where E and
f(E) are punctiform, then f is stronély interior on E.

Note. This theorem and corollary are closely related to a theorem in the
author's book [2] and also to a result of Stoilow in [1].

(3.4) Theorem. If the non-constant function w = f(z) is continuous in a
resion R of the complex plane and has a non-zero derivative at all points of
R - X where X is countable, then f is light and strongly interior on R.

First, the mapping must be light. For if f were constant on a non-degen-
erate continuum ¥ in R, there would be a point z, ¢ ¥ - ¥ * X where f'(zo)
exists and is # 0, which clearly is impossible as the constancy of f on ¥
would make f’'(z,) = 0.

We show next that at any point z, ¢ R - X, f is strongly interior. To this
end let wy, = f(z,) and let S be any disc in R centered at z, such that f(z)

# wo on Fr (S). We shall show that if F = f[Fr(s)], any w, satisfying |w, - wel
< plwy, Fl belongs to f(S) and, as S can be chosen arbitrarily small, this will
give strong interiority at z,. Suppose on the contrary that some such w, is
not in f(S). Since f(S) is compact, some arc o of the circle C: w - wo =

| ws - wo| fails to intersect f(S). Then for each w e o, the first point w' of
f(S) on the radius w wo, of C in the order w, w, is the image of a point z' in-
terior to S. As the points w'’ are all distinct, there are uncountably many of
the points z' and hence some z’eR - X. But this is impossible by (3.1), since
f'(z') # 0 and the linear interval w' w intersects f(S) only in w'.

Finally, since both X and f(X) are countable, it follows from (3.3) or
(3.91) that f is strongly interior on R.

*A set M is punctiform provided ¥ contains no continuum.
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4. INTERIORITY OF THE MODULUS FUNCTION. CONSEQUENCES. Let w = f(z) be ana-
lytic and non-constant in a region R of the complex plane. We define m(z) = | f(z)l,
z ¢ R, and call m(z) the modulus function. Obviously 1t 1s continuous. As an
immediate consequence of the strong interiority of f(z) on R we have

Theorem. The mapping m(z) of R into the non-nefative real axis is strongly
interior. ;

This yields at once the following for the most part standard results.

(1) For any a € R and any neighborhood V of a in R, there exists z € V
such that m(z) > m(a); and if m(a) # 0, there exists z, € V such that
m(zy) < m(a).

(2) m(z) has no relative weak maximum points and no relative weak minimum

~points other than zeros.

Note. For real valued functions on R the absence of relative maximum and
minimum points implies strong interiority.

(3) Maximum Modulus Theorem. If f(z) is analytic in a bounded open set G
and on Pr(G) and | fiz) | S X onFr(G), then | f(z)| < ¥ for z e G.

For otherwise by (1) m(z) exceeds ¥ for some z ¢ G. Then m{a) = mag m(z)
for some a ¢ G, which is impossible by (1). g

(4) If f(z) is analytic in a bounded opzen set G complementary to a level
lcurve L: | f(z) | = k and on Fr(G) where Fr(G) <L, f(z) has at least onme zero
in G.

For by (8), | ftz) | < k on G. Thus m(a) = min m(z) for some a & G; and by

zel@

(1) m(a) must be 0.

(h) Every (non-constant) polynomial has at leost one zero.

For let wo # O be a value of a polynomial P(z). The open set G defined by
’I P(z) | < | wo | is bounded, since P(z) » = as z » =, and Fr(G) is contained in
the level curve | P(z) | = | wo |. Thus the result follows from (4).

(6) Let R be any bounded redion with connected boundary B and let f(z) be
analytic on R + B. Then either m(R) < m(B) or else f has at least one zero in R.

For the set m(B) is a continuum and hence is an interval a £ x £ B of the
non-negative real axis; and if it does not contain m(R), we have a > m(zo) > O

G

for some z, ¢ B by (3). Thus m(a) = min m(z) for some a € R and m(a) = 0 by (1).

zekR
Remark. 1t seems likely that while the strong interiority of m(z) is an
immediate consequence of that of f(z) it might well be much easier to establish
by an elementary approach than is the strong interiority of f(z). For example,
the property obtained in the conclusion of (3.1) that every linear interval
starting from w, intersect f(S) again yields strong interiority for m(z) but

not for f(z).

H. BOUNDARY PERMUTATION AND REGION PRESERVATION. In this section 4 and B,
will designate locally connected generalized continua, i.e., locally compact,
connected, locally connected separable, metric spaces.

¢5.1) Theorem. If f(4) = B =B, is strongly interior, for any condition-
ally compact open- set U in A, we have Fr(f(U)] < fI[Fr(v)].

As U is conditionally compact, continuity of f gives f(U) = f(U) which in
turn gives f(U) - f(U) = f(U - U); and since f(U) is open, this latter is the
same as our conclusion.

(h.2) Theorem. Let f(A) = B <B, be strondly interior. Then for anu re-
gion R in B,, any non-empty conditionally compact component of f-1(R) maps onto
R under f.

Proof. Let 0 be a conditionally compact component of f~1(R). Then 0, being
a component of an open set of 4, is open. Hence f(0) is open in B, and there-
fore also in R. We show also that f(0) is closed in R. Firstly, no points of
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Fr(0) are in f-1(R). For suppose x belongs to Fr(Q) and f-1(R). Then Q0 + x is
a connected subset of f~1(R) containing the component 0 as a proper subset.
This is impossible and Fr(Q) and f~1(R) are disjoint. Since f[Fr(g)] =Fr(f(0)]
and f[Fr(0)] does not intersect R, f(0) is closed in R. Then f(Q) = R, being
both open and closed in R.

Corollary. Let w = f(z) be analytic in a bounded reéion R and on Fr(r).
Any value wo, taken by f(z) on R lies either in f[Fr(R)] = F or in some bounded
component of W - F.

If f takes in R one value wo, in a component 0 of ¥ - F, then it takes all
values in (.

6. EXPANSIVE MAPPINGS. As in the preceding section 4 and B, will denote
locally connected genmeralized continua. A mapping f(4) = B = B, is said to be
expansive on 4 provided 4 is the sum of a strictly monotone increasing sequence
[Rn] of conditionally compact regions with Fn < Rn41 such that if Fn = f[Fr(Ra)],
then any compact set K in B, intersects at most a finite number of the sets Fa.

Remark. An entire analytic mapping w = f(z) is expansive provided that for
some sequence of circles Cp: :

| 2o | = rp with rp » <, we have lim [min | f(z) |] = =
n-o « |z|=rn :

(6.1) Theorem. If f(4) = B < B, is stronély interior and expansive, we
have B = Bo. In other words, every point of By is the imade of some point of A

Proof. Let y e Bo; we must show that y e f(4). Let Ry, Ry, ... be a strictly
monotone increasing sequence of regions in 4 as guaranteed by the expansibility
of f, and let Pn = f(Fr(Rp)]. If y e Fy, then y e f(4). If ¥ ¢ F, then join vy
to F, by a simple arc yz, where z € F,. Let x be a point of Fr(R,) with f(x) = z.
Since f is expansive we may find an integer k, kB > 1, such that for n 2 k, then
Fp, * (yz) = 0. By strict monotoneity of [Rn], x & Rp. Also z ¢ fIFr(Rg)] = Fp.
Let 0 be the component of B, - Fj which contains z. Let U be the component of
f-1(0) which contains x. Since U is a connected subset of 4 - f-1(Fr) = 4 - Fr(Ry)
which intersects Rz, we must have U —Rk. Then U is conditionally compact. By
(5.2) we then have f(U) = 0. But v e 0, since yz is a connected set not inter-
secting Fi. Hence there is a point of Rp which maps onto v, and the theorem is
proved.

(6.11) Corollary. An expansive, entire analytic function takes on all finite
complex values.

(6.12) Corollary. Every polynomial has at least one zero.

Definition. Let f(4) = B =B, be continuous. We say that lim f(x) = < if

X =y x©
for every sequence X, X, ... in A without a limit point it is true that f(x,),
f(x,), ... contains no subsequence which converges to a limit in B,.

(6.2) Theorem. If f(A) = B, is stronély interior and expansive, then either
lim f(x) = @ or else every f-1(z), z ¢ Bo, is infinite. Further if lim f(x) = «

x Yo X = cc
then f-1(z) is compact for every z € Bo; if lim f(x) # =, f~1(z) is non-compact
for everll z € Bo., x>
Proof. We assume that lim f(x) # = and show that each f-1(z), z € By, is
x> cc s

non-compact. By assumption, there is an infinite sequence [x;} of distinct
points in 4 without a limit point such that [f(x;)] converges to a point y of
B,. Since f is expansive, there exists a strictly monotone increasing sequence
[R,] of conditionally compact regions with union 4 such that no compact subset
of B, intersects infinitely many F,, where F, = f[Fr(R,)]. Since the sequence
[x;] has no limit point in 4, it follows that no region R, contains infinitely
many points of [x;]. Hence the sequences [R,] and [x,] may be considered ad-
Sl B Bhat x, e R, x, t R, - Rp-y for n > 1.



T R | . R - T T T 1T A R Pr I m YL PR e " Ca il S o SRR SR i S e
" i V‘

EXPANSIVE MAPPINGS 7

Choose any z ¢ B . Let D be a continuum in B, containing y and z. Let C
be a conditionally compact region in B, containing y, and let ¥ = T + D. Then
K is a continuum in B, containing y and z and with y an interior point of &£.
Since the sequence [f(x;)] converges to y, then f(x,) € K for n > k. Moreover
we can assume k large enough so that £ * F, = 0 for n > k. Let 0, be the com-
ponent, of Bo - Fn - Fn-1 containing K for n > k. Let Wn be the component of
4 - FY(F, + F,.1) which contains x,. Since x, ¢ Ry - Ry-1 and -1 (F, *+ Facq)
> Fr(R,) + Fr(R,.,), then ¥, <R, - F,_; for n > k. Since W, is a conditionally
compact component of f‘l(Qn then by (H.2) we have f(W,) = 0n. Then, for n >k
there is a point g, of R, - F,.q with f(g,) = z € On. Hence f-1(z) is non-com-
pact and the theorem is proved.

Examples of expansive functions.
(1) Every polynomial is expansive. Any rational function is expansive on

the set S - P where S is the complex sphere and P is the set of all poles of

the function.
(2) The exponential e¢? is not an expansive function. To see this, con-

sider a condltlonally compact reglon R containing the origin. Then Fr(R) must
intersect the y-axis, whose image is the unit circle. Hence f[Fr(R)] intersects
the unit circle, which is compact. This is easily seen to contradict expan51b111ty

(3) Any non—constant entire function of order less than 1/2 is expansive.
For by the well known theorem of Wiman [4] any such function has the property
quoted in the remark at the beginning of this section.

The enﬁgre function f(z) = ngo an z" is of order p if and only if

lim log [a,] = o

=i logn 3
As a consequence, f(z) —ngg(n!)a
253-255) .

Consider the function f(z) = %1 g é%% This function is an entire func-
0=

is of order é . (See Titchmarsh [3], pages

tion. The order of convergence of the zeros of f(z) (i.e., the g.l.b. of all p
for which 3 (é%)p is convergent) is zero, and the order of an infinite pro-
n:

duct is equal to the order of convergence of its zeros; thus we see that f(z)
is of order zero. By our theorem, f(z) is expansive. This fact can be verified
directly by observing that for each r > 0, min | f(z) | = | f(r)|.

|2 |=r

If we define rj = %ﬁ_%;iiif = 8,2%k1 it may be verified that f(ry,1) =

= (1~ 8.2%1) « £(ry) # 0. Thus lim | f(ry) | = =. If we define Ry to be the
k>

set of all z such that | z | £ r,, we see that f[Fr(R,)] can intersect a given

compact set for at most a finite number of values of k.

(6.3) Theorem. 4 mappiné f(A) = B<= B, is expansive if and only if each
component of the inverse of a continuum in Bs is compact.

Proof. (Necessity) Assuming the map f expansive, we show that each compo-
nent of the inverse of any continuum # in B, is compact. Suppose on the contrary
that F is a continuum in B, having 0 as a non-compact component of its inverse

,f‘l(ﬂ) Then Q is closed but not compact. Hence for no finite n is Q0 contained in
Rn- It follows that 0, being connected, must intersect the boundary of infinitely
many Rp. It follows that for infinitely many n, f(Q) *f[Fr(R,)] # O. Since f(0)=H, H
is then a compact set intersecting infinitely many F,. This contradicts the expansi-

tivity of f.
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(Sufficiency) Suppose [W,] and [Q,] are strictly monotone increasing se-
quences of conditionally compact regions whose sums are 4 and B, respectively,
Suppose these selected so that f(W.) * 0. # O. Define £, = 0, + f(W,). Then E,
is a continuum since both 0, and f(W,) are continua and 0, ° Ff(W,) # 0. Let K,
be the component of f~1(E,) containing W,. By hypothesis X, is compact and
hence a continuum. It is possible to find a conditionally compact neighborhood
R, of K, whose boundary does not intersect f~1(F,). Then Xk, € R, and if
P, = fl¥r(R.)], it is true that 7, - B, = 0.

Let £, = 0, + f(R,) + f(W,). Then F, is a continuum, being the sum of
three intersecting continua. Let X, be the component of f1(E,) containing R,.
As before, we can find a conditionally compact region R, containing X, and such
that ¥, * £, = 0, where F, = f[F(R,)]. Continuing the process we define

By = Gn i f(ﬁn) + P (Ra1)

This is a continuum, being the union of three intersecting continua. Define X,
to be the component of f-1(E,) containing Fn-1. Let B, be a conditiomally cam-
pact region in 4 containing K, and such that f[Fr(Rs)] - E, = 0. We obtain a
strictly monotone increasing sequence [R;] of conditionally compact regions
whose sum is 4. Let F, = f[Fr(R,)]. If C is a compact subset of By, there exists
an integer k so that C < (0. But then C <k, for n > k and hence C : Fp, = O.for
n > k. This proves that f is expansive.

(6.31) Corollary. 4 mapping f of A onto B, is expansive if and only if
non-compactness is invariant under f for closed generalized continua of A.

Examples.

(1) The mapping f(z) = e? takes the non-compact y-axis into the compact
unit circle, and hence is non-expansive.

(2) The function f(z) = cos z maps the closed non-compact x-axis onto the
compact interval -1 £ u £ 1. Hence f is the non-expansive.

(3) By a topological ray we mean the set obtained by removing the point «
from an arc joining the origin to «. If w,; is the limit of f(z) as z approaches
< along some ray R, then w, is an asymptotic value of f(z). A necessary condi-
tion for expansibility of a function is the absence of asymptotic values.

In connection with (3) we have the following characterization of expansi-
bility of mappings.

(.4) Theorem. If 4 is a locally connected generalized continuum and B, is
locally compact separable and metric, a mapping f (4) = B, is expansive if and
only if on each closed topological ray in A there exists a sequence (xn) of
points such that f(xn) -» = (i.e., no subsequence of [f(xy)] converges to a
point).

For let f be expansive. Then if R,, R,, ... is a strictly monotone in-
creasing sequence of conditionally compact regions with union 4 such that no
compact set in B, intersects infinitely many of the sets f[Fr(R,)] and r is
any closed topological ray in 4, there exists an x, € r * Fr(rR,) for n suf-
ficiently large. Clearly f(x,) - =, since no compact set in B, contains in-
finitely many of the points [f(x,)].

On the other hand suppose f is not expansive. Then by (6.31) there exists
a non-compact closed generalized continuum ¥ in 4 such that f(¥) = ¥ is com-
pact. Using the local connectedness of 4 and the local compactness of 4 and B,
we can readily construct a closed locally connected generalized continuum £ in

4 containing ¥ such that f(X) = F is a continuum. For let ¥ = ? ¥; where each

N; is compact and ¥;< N, < ... and let € > O be chosen so that V,g(¥) is com-

pact. For each i, ¥; is interior rel. 4 to a locally connected continuum X;
satisfying
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R =V, (i), F(Ki) =TVey (K).

Then if X = % k;, # = £ f(X;) = f(K), it is readily seen that X is a closed
locally connected genmeralized continuum and that # is closed and hence is a
continuum. But now X contains a closed topological ray r, since X oN and thus
is non-compact; and since f(r) < H and A is compact, clearly for no sequence
(x.] iv'r cap we have Fix;) » =,

7. QUASI-INTERIOR MAPPINGS. A mapping f(4) = B < B, is said to be quasi-
interior provided that for any y ¢ B and any open set U in 4 containing a com-
pact component of f~1(y), y is interior relative to B, to 7 (U).

Notes.

1. Every strongly interior mapping is quasi-interior.

9. Every light quasi-interior mapping is strongly interior.

(7.1) Theorem. On a locally connected deneralized continuum A, a mapping
f(4) = B =B,, where B, is locally connected, is quasi-interior if and only if
for each redion R in By, each conditionally compact component of f-1(R) maps
onto R under f.

pProof. Necessity. Let 0 be a non-empty conditionally compact component of
~1(r). Let y ¢ f(0). Then O contains a compact component of f-1(y). For if
x € 0 - f-1(y), the ccmponent of f-1(y) containing x lies in 0, is a closed
set, and thus is compact since 0 is conditionally compact. Accordingly, vy is
interior to 7(0). Then if f(Q) # B there is a point z € R - f(Q) which is a
limit point of f(0). Let [z;] converge to z, where z; e f(0), let
Xn € 0 © f~Y(zn). Since Q is conditionally compact, we may suppose that [xn]
converges to a point x e 0. Then f(x) = lim f(xi) = lim z; = z, and hence
x ¢ f~1(R). Then x € 0, since 0 is a component of f-1(r). This implies that
z ¢ f(Q), which is a contradictiom.

Sufficiency. We must show f quasi-interior. Let y ¢ B and let X be a com-
pact component of f~1(y). Let U be an open set containing X. Let 7 be an open
set containing X such that ¥ < U, 7 is compact, and f-i(y) - Fr(v) = 0. Then
y ¢ FI[Fr(v)]l. Choose a region B in B, so that y ¢ R and R * f[Fr(v)] = 0,
which is possible since f[Fr(¥)] is a compact set not containing y. Since v
is compact and since f-1(R) - Fr(v) = 0, there is a conditionally compact com-
ponent 0 of f-1(R) contained in 7. By hypothesis, f(0) = R and hence y is in-
terior to f(U).

Note: Neither local connectedness nor local compactness is invariant
under all quasi-interior mappings. For we may map the interval 0 < t ¢ 1 home-
omorphically into the graph ¢ in the xy-plane of y = sin n/x, 0 < x g 1. Map
the interval 1 < t < 2 homeomorthically into an arc in the xy-plane which only
intersects ¢ at (1,0), 1 mapping into (1,0) and 2 mapping into (0,0). Map the
entire interval 2 < t < 8 into (0,0). We have now defined a quasi-interior map
of the locally connected and locally compact interval 0 < t < 8 into a set
which is neither locally compact nor locally connected. (The map is quasi-
interior since the inverse of (0,0) has no compact component.)

We next prove a theorem on sequences of quasi-interior mappings analogous
to the Weierstrass double series theorem. For a closely related result see
[5]. Actually since quasi-interiority is equivalent on locally connected
continua to quasi-monotoneity (see below), this theorem includes the main re-

result of {H] as a particular case.
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(7.2) Theorem. If the sequence of quasi-interior mappings fn(4) = Bn =B,
converges to the mapping f(4) = B < B,, the converégence being uniform on each
compact set in A, then f is quasi-interior.

Proof. Let y ¢ B and let X be a non-empty compact component of f=1(y).
Let ¥ be an open set containing X. Choose an open set U containing X such that
U is compact, U < W, and such that f~1(y)-Fr(0) = 0. We show that y is in-
terior to £(7).

Define e¢ so that 8e = p(y,F), where F = f[Fr(U)]. Then ¢ > 0 and we may
choose 0 < € < ¢ such that Vg(y) is contained in some component R of V¥, (y).
Since the convergence is uniform on 7, there exists an integer ¥ such that
for n > N we have p[f,(x), f(x)] < e for all x € U. Then for n > ¥ we have
fnlX) = Ve (y) = R and Py = fy[Fr(0)] <« Ve (F). Then R ¢« F,, = 0, and R is con-
tained in the component R, of B, - F, which contains y. Then if 7, is the com-
ponent of f-1(R,) containing X, we have U, < U. Then fn(Un) = Bn R Ve (y)
and hence f, (U) >R for n sufficiently large. Since U is compact, we obtain
f(U) >R. This completes the proof.

8. COMPACT MAPPINGS. A mapping f(4) = B is said to be compact provided
the inverse of every compact set in B is compact. Also f is said to be
monotone prcvided that for each y e B, 1 (y) is a continuum; and f is
said to be strongly monotone provided the inverse of every continuum in
B is a continuum. All spaces used in this section are supposed separable and
metric.

Notes.

1. Compactness of a mapping is equivalent to invariance of non-conditional
compactness.

2. Compactness of a mapping is equivalent to invariance of non-compactness
for closed sets.

3. If 4 is commect, every mapping on 4 is compact.

(8.1) Theorem. Suppose f(A) = B is compact. Then for any vy € B and any
open set U containiné f~1(y), u is interior to f(U).

Proof. Suppose there exists an open set U containing f~1(y) such that y
is not interior to f(U). Then there exists a sequence [y;] in B - f(U) con-

Sl | verging to y. Consider the compact set £k = y + _Zl v;. By compactness of f,
1=

)7< f~1(k) is compact. Let x, € f~1(y,). Then x,, ¢ U. Since f~1(k) is compact,

TSRS U

there is a convergent subsequence [xn;] of 4 with x,; - x ¢ 4. Then
f(xn;) » f(x). But f(xn;) = Yn; > v and hence x € f~1(y). Since x ¢ U and

f~-1(y) = U, we have a contradiction.

(8.11) Corollary. If A is compact, every monotone mapping on A is quasi-
interior.

(8.12) Corollary. Local compactness and local connectedness are invariant
under compact mappinés.

(8.2) Theorem. A4 mapping f(A) = B is compact if and only if it is closed
and point-inverses are compact.*

*Thus our definition of compact mapping is equivalent to Vainstein's. See [6,7]. The

term is due to Vainstein. Out results were obtained independently of his using the term
"strong continuity.'" Compare also with R. Manning [8]
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proof. Suppose f is compact. It follows immediately that point-inverses
are compact. Suppose now that C is closed in 4 while f(C) is not closed in B.
Then there exists a point y € B — f(C) and a sequence y, -» y where y, e f(C).

Then X = y +_21 y; is a compact set and hence f~t(f) is compact. Let
X8 Qo f—i(Z;)_ Then there exists a point x € f~1(fK) and a subsequence [xni]
such that x, - x. Then f(x, ) =y, - f(x) and y = f(x). Since C is closed,

1 1 1

x e C and f(x) = y € f(C). This 1s a contradiction.

Suppose f is closed and point-inverses are compact. Suppose C is a com-
pact set in B such that £~ (C) is not compact. Let [Xi] be an infinite se-
quence of distinct points of f~1(C) without a limit point. Since point—inverses
are compact, we may suppose that f(x;) # f(x,) for i #-j. Then X~ 3 x, is a

i=1
closed set in 771(c); and f(k) is a countably infinite compact subset of C.
There exists a subsequence of [f(xi)], which we suppose the same as the orig-
inal sequence, which converges to a point y e C distinci from any f(x,). Then
% x; is a closed subset of 4 which maps onto the set 2 f(x,), which is not
i1 i=1
closed. This is a contradiction and 7' (C) must be compact.

(8.3) Theorem. If f(A) = B is compact and monotone, then the inverse of
every connected set in B is connected.

Proof. let C be a connected set in B and suppose that 77 (C) = S1 + Sgis
a separation. Since f is monotone, S1 and 32 are inverse sets. We have

S,*S, = 0. Since S is an inverse set, this implies that f£(S,) - f(Sz)
= fI(S, .8,) = 0. Since f is closed, we have f(S.) = F(S,J; and hence f£(S,) -

f(S,) = 0. Similarly f(S,) * f(S,) = 0. Therefore C = f(S,) + f(S,) is a sepa-
ration of ¢ and we have a contradiction.

(8.31) Corollary. 4 compact monotone mappiné is strongly monotone, i.e.,
the inverse of a continuum is a continuum.

(8.4) Theorem. If 4 is locally compact and f(A) = B is monotone, then a
necessary and sufficient condition that f be compact is that it be quasi-
interior.

proof. The necessity follows immediately from (8.1). Suppose now that f
is quasi-interior and C is a compact subset of B. Let [x;] be a sequence in

f~*(c); we wish to show that [x;] has a convergent subsequence. We may suppose
that [f(x;)] converges to a point y e C without loss of generality. Let 7 be a
conditionally compact open set containing f~*(y). Almost all £~*f(x;) inter-
sect U by the quasi-interiority of f. We show that almost all f~*f(x;) are con-
tained in y. If this were not true, the connectedness of each f~*f(x;) would
enable us to find an infinite sequence of points z,; € f*f(xs;) such that

Zn; >z where z € Fr(y). This implies that z ¢ f~'(y) which is a contradiction.
Therefore almost all f~*f(x;) are contained in 7. Then almost all [x;] are

contained in 7, which is compact. It follows that F~*(C) is compact.

(8.5) Theorem. If A and B are locally connected $eneralized continua then
for a monotone mappiné f(A) = B the properties of compactness, stroné monote-
neity, and quasi-interiority are equivalent.

Proof. By the preceding theorem, compactness of f is equivalent to quasi-
interiority. We have also shown previously that compactness of f implies strong
monoteneity. Suppose now that f is strongly monotone and let X be a compact
subset of B. There exists a continuum C in B containing K. Then f*(C) is a
"~ continuum containing the closed set f (k). Therefore f~! (k) is compact.
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9. COMPOSITION OF MAPPINGS. A type of mapping is understood to have the
the "group property" provided the composition of two mappings of this type is
also of this type. For example, if f,(4) = Band f,(B) = C< C, are strongly
interior, so also is f,f, (4) = C < Co as is well known. Also, monotone map-
pings on compact spaces have the group property. The following facts are read-
ily verified.

1. Compact mappings have the groip property.

2. Strongly monotone mappings have the group property.

3. Monotone mappings do not have the group property .(on non-compact -
spaces) . :

4. Quasi-interior mappings do not have the group property.

(9.1) Theorem. If f.(4) = B is compact and monotone and f,(B) = C is
quasi-interior, then f = f,f, is quasi-interior.

Proof. let X be a compact component of f™t(y), y e B, and let 7 be any
open set containing X¥. Since f, is strongly monotone, f,(X) is a component of
f,”*(y). Since f, is quasi-interior, f,(X) is in the interior of f,(U). Since
f, 1S quasi-interior, we have that y is an interior point of Fals (U0} = 1(8).

(9.2) Theorem. If f, is quasi-interior and f, is interior, then f = f,f,
is quasi-interior.

Proof. let f,(4) = ¥ and f,(¥) = B. Consider any y ¢ B, let X be a com-
pact component of f7*(y) and let U be any open set containing X. Then f,(X) is
a continuum. Iet x e f, (X); then any component of f, *(x) which intersects X
has to be contained in X and thus in U, so x is interior to f,(U). Hence f.(X)
is contained in the interior of f, (). Since f, is interior, y = f.f,(X) is
interior to f,f, (U). Therefore f is quasi-interior.

10. FACTORIZATION. By a factorization of a mapping f(4) = B is meant a de-
composition of f into two mappings f,(4) = ¥ and f,(¥) = B such that f(x) =
[,f,(x) for each x € 4. The space ¥ is called the middle space (Rado) and it
like 4 and B, is supposed separable and metric.

(10.1) Theorem. If f(4) = B is compact, then however it be factored into
the form f = f,f, where the transformations f, and f, are continuous, f, and
f, are compact.

Proof. let ¥ = f,(4). If Y B is compact, f~'(Y) is compact since f is
compact. Then f,f*(Y) = f,”*(Y) is compact by continuity of e

For any Z— ¥, f,7*(z) = f f,(Z). If Z is compact, so also is [ 68},
Since f is compact, f"!f,(Z) is then compact. Then f, *(Z), being a closed

subset of a compact set, is compact. Hence f, is compact.
Note. The preceding theorem shows that however a compact mapping f be
factored continuously into f = f,f,, both f, and f, are compact. It is also

true if under f point inverses are compact then however it be factored contin-
uously into f = f,f,, under both f, and f, point inverses are compact. However,
if f is closed, it does not follow that both factors f, and f, of f are neces-

sarily closed. On the other hand, since FotY) = Ff, ™2 tr), it follows that 7.
would always be closed.

(10.2) Theorem.* Any compact mapping adnmits a factorization f = f,f,
where f, is compact and monotone and where f, is compact and light.

Proof. We first construct the middle space ¥. A point of ¥ is defined to
be a component of f~1(y) for some y e B. A subset U of X is defined to be open

*This theorem is stated without proof in Vainstein [6]. It was discovered independently
by the author and the proof is included for the sake of completeness; it differs some from
the proof in the well-known case of compact spaces as proven in 1934 by Eilenberg and the
author.
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in ¥ if and only if the union of the elements of U is open in 4. We proceed to
verify the axioms for a regular perfectly separable topological space. The
union and intersection axioms are obvious. We prove a lemma before verifying
the separation axiom.

Lemma.. Let f(4) = B be compact. If U is any open set in 4 and Uy is the
union of all components of sets f~1(y), y € B, contained in U, then U, is open
in 4.

Proof. Suppose the lemma is false. There exists a point p e U, and a se-
quence [p;] in 4 - U, such that p e lim inf C;, where C; is the component of

f-1f(p;) containing p;. Let X = f(p) +.§1 f(p;). Since K is compact, f~1(X) is
1'=

also compact. Accordingly lim sup C; is connected. Since f is continuous, lim
sup Ci = f~1f(p). Since Ci & U and f~1(k) is compact, lim sup Ci ¢ U. Conse-
quently the component of f~1f(p) containing p is not contained in U. This is a
contradiction, since p € U,.

Using the lemma, we may now establish the separation axiom. Let x and y
be distinct points of ¥. Let X be the closed subset of 4 corresponding to x.
Then 4 - X is open, and hence the elements z of ¥ such that Z is contained in
A - X forms an open subset of 4. The element y does not belong to the open set
of ¥ determined by 4 - X.

We proceed to verify regularity of ¥. Let p ¢ ¥ and let U’ be an open set
in ¥ containing p. Let P and U be the sets of 4 corresponding to p and U' re-
spectively. There exists an open set 7V in 4 such that Pc V = 7V < U. Let 7,
be the set of all points in ¥ whose correspondents are contained in V. By the
lemma, this is an open subset of ¥. We show that ¥, = U'. Let ¢ be a point of
¥ - U'. Then 0, the set of 4 corresponding to ¢, is contained in 4 - U. There
exists an open set ¥ containing Q and such that V- ¥ = 0. If ¥, is the subset
of ¥ consisting of all points of ¥ whose correspondents in 4 are contained in
W, then W, is an open subset of ¥ containing g such that 7, * Wo = O.

To show ¥ perfectly separable, consider a fundamental sequence (basis)

[Rn] of open sets in 4. For any finite set n,,...np of positive integers, let
Réyy...,Bp) = Bn, * R, * ... +Rpy. Let Rolny,...,ns) be the subset of ¥ con-
sisting of all points of ¥ whose correspondents are contained in R(ni,...,ng).

Then each Ro(ny,...,nk) is an open set. Let p ¢ ¥ and let U' be an open set in
¥ containing p. Let P, U be the subsets of 4 corresponding to p, U' respec-
tively. Since P is compact, there exists integers n,,...,nx such that

P <Rins,...,n3) <¥U. Then p & Bs (n,,...,ny) <. Thus the sets R, form a

basis in A.

We now define the factors f, and f,. For each x € 4, let f,(x) be the ele-
ment of X whose correspondent contains x. For each p e ¥, let f.(p) = ff1i1(p).
By the definition of open sets in ¥, f, is continuous. We show that f, is
closed. Let Kk be a closed set in 4. Then ¥ - f,(K) is the set of all elements
y of ¥ such that f,-1(y) = 4 - K. Therefore ¥ - f,(K) is open in X. Hence
f1(K) is closed in ¥ and f, is closed. The map f, is continuous; for if Y is
any closed set in B then f,~1(Y) = f,f-1(Y) is closed in ¥. The map f, is
clearly monotone. Both f, and f, are compact by (10.1). We show finally that
fo is light. Suppose f, is not light. There exists then a non-degenerate con-
tinuum £ in ¥ such that f,(X) is a point y of B. Then f,~1(k) is a continuum
contained in f-1(y). Since f,~1(K) is contained in a component of f-1(y), we
have that f,f,~1(k) = K is a single point, which is a contradiction.

Definition. Two mappings f(4) = B and 8(4') = B' (all spaces topological)
are topologically equivalent if there exist homeomorphisms h(4) = 4' and
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E(B) = B' such that for x e 4, f(x) = k~1gh(x). Two factorizations f = f,fi,
f = 8,6, of a mapping f(4) = B are strictly topologically equivalent provided
there exists a homeomorphism h(¥) = N from the middle space ¥ of the first to
the middle space N of the second such that hfi(x) = £€i1(x), x € 4, and

fa(y) = 8,h(y), y € A

(10.3) Theorem. Any two monotone-light factorizations of a compact map—
ping are strictly topologically equivalent.

Proof. Let f(4) = B be compact and let f = f,f1, where f,(4) = ¥ and
fo(¥) = B, and f = $,8,, where 8,(4) = ¥ and $,(N) = B be monotone-light fac-
torizations of f. :

For each x € ¥ let h(x) = 8,f,"1(x) so that for each y e ¥, 1y =
f.6~1 (y). Since for any x e ¥, fi~1(x) is a coamponent of f-1f.(x) and simi-
larly for y € ¥, 6,-1(y) is a component of f~1¢,(y), it follows that both h
and h-1 are single valued. Further, if £ is any closed set in ¥, ¢,~1(K) is
closed by the continuity of 4, and f.8,~1(K) = b1 (k) is then closed since [,
is closed. Similarly for any closed set # in X, h(H) = 6,f,~1(H) is closed
since f, is continuous and ¢, is closed. Thus h is a homeomorphism.

(10.4) Theorem. A compact mappiné f is quasi-interior if and only if it
factors into the form f,f. where f. is monotone and f, is light and interior.

Proof. Suppose that f is quasi-interior. Since f is compact, it admits a -
monotone-light factorization f = f.f.i. We must prove that f, is interior.

Let x be a point in the domain of f, and let U be a neighborhood of x.
Since f. is compact and monotone, X = f.~1(x) is a continuum. The set X is a
component of f-1f,(x). Let ¥ = f,-1(U). Then ¥ is an open set containing X;
and therefore, since f is gquasi-interior, f,(x) is interior to (V). However,
f(V) = fo(U). This proves that f, is interior.

Now consider a compact mapping which admits a monotone-light factorization
f = fof1 where f, is also interior. Since f, is monotone and compact, fi is
quasi-interior. Since we are assuming f, interior, it follows from (9.2) that
f = fof1 is quasi-interior.

Definition. (Wallace) A mapping f(4) = B, where 4 is a locally connected
continuum, is quasi-monotone provided that if X is any continuum in B with a
non-empty interior relative to B, then f-1(K) has just a finite number of com-
ponents and each of these maps onto B under f. A result of Wallace [9] to-
gether with (10.4) gives at once

(10.41) Corollary. On a locally connected continuum A quasi-interiority
is equivalent to quasi-monotoneity.

11. INVERSION OF LOCAL CONNECTEDNESS.

(11.1) Theorem. If A is locally compact, separable and metric, the map-
piné f(4) = B is interior and K is any continuum in B, then any compact com-
ponent of f-1(K) maps onto K.

Proof. Let # be a compact component of f-1(k). Evidently f(H) = K. Now
let 7 be any neighborhood of #. Choose an open set U so that T is compact, U
is contained in 7, and Fr(U) + f~1(k) = 0. Let f~1(k) + U = W. Then W is open
in f-1(k); and f(W) is open in X, since f is interior. Also W is compact and
hence f(W) is compact. Thus f(¥) is closed in K. Therefore f(¥) = K. Whence,
f(B) = K. For if f(H) were a proper subset of X, so also would be f(W) for V
sufficiently near 4.

(11.2) Theorem. Let f(A) = B be light where A and B are locally compact,
separable, and metric. Then for any compact subsets K of B and H of A and any



