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Frequently Used Notation

I. Topological Notation. Let (X, p) be a separable metric space.

B° is the interior of B< X.
B is the closure of B < X.
2B is the boundary of B X.
4 is the Borel field of subsets of X.
C,(X) is the set of bounded continuous functions f:X — R.
B(X) is the set of bounded #,-measurable f:X — R.
U,(X) is the set of bounded p-uniformly continuous f:X — R.
M(X) is the set of probability measures on (X, #,).
Wil = S“El f(x)| for fe B(X).
XE.

11. Special Notation for Euclidean Spaces

1)
2)
3)
4
5)
6)

7)
8)

9)

10)
11)
12)

13)

R? is d-dimensional Euclidean space.
[x| = (ix})”2 for x € RY.

B(x, r)l= {ye R: Ix —y| < 1.

{x, y) = il:x,-y,- for x, y€ R

§971 = {xe R%: x| = 1}.
C(RY) = {fe Cy(RY): lim fix) = 0}.
ixj=>

Co(9) is the set of fe Cy(#) having compact support.
C7{%) is the set of f: 4 — R possessing bounded continuous derivatives of
order up to and including m.

o

Cr$) = () C3()

m=
C~(%) is the set of [ % — R possessing continuous derivatives of all orders.
C3(9) = C*($)n Co(¥).
Cr(%) for 4 = [0, ) x R? is the set of f: 4 — R such that fhas m bounded
continuous time derivatives and bounded continuous spacial derivatives of
order less than or equal to n.
I*(%),1 < p < oo, is the usual I#-space defined in terms of Lebesgue measure
on %.



xii

Frequently Used Notation

14) L{.(%) is the set of f:9 — R (or C) such that fe I?(K) for all compact

Kin4%.

111. Path Spaces Notation

1) C(I, RY) for I = [0, o) is the set of R*-valued functions on [ into R%.
2) Q,(Q) (see p. 30).

3) #(#) (see p. 30).

4) x(t, w) (see p. 30).

IV. Miscellaneous Notation

8)
9)

a A b is the smaller of the numbers a, b € R.

a v b is the larger of the numbers a, b e R.

S, is the set of symmetric non-negative definite d x 4 real matrices.

S; is the set of nondegenerate elements of S;.

| A]l, where A is a square matrix, and is the operator norm of A.

o(¥), where € is a collection of subsets of X, and is the smallest o-algebra
over X containing 4.

a(F), where # is a set of functions on X into a measurable space, and is
the smallest o-algebra over X with respect to which every element of # is
measurable.

[A], 4 € R, is the integral part of A.

& ~ Ii{a, b) (see p. 92).
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Chapter 0

Introduction

The main purpose of this book is to elucidate the martingale approach to the
theory of Markov processes. Needless to say, we believe that the approach has
many advantages over previous ones, and it is our hope that the present book will
convince some other people that this is indeed so. When we began this project we
were uncertain whether to proselytize by intimidating the reader with myriad
examples demonstrating the full scope of the techniques or by persuading him
with a careful treatment of just one problem to which they apply. We have decided
on the latter plan in the belief that it is preferable to bore than to batter. The result
is that we have devoted what may seem like an inordinate number of pages to a
rather special topic. On the other hand, we have endeavoured to present our
proofs in such a way that the techniques involved should lend themselves to easy
adaptation in other contexts. Only time will tell if we have succeeded.

The topic which we have chosen is that of diffusion theory in R?. In order to
understand how this subject fits into the general theory of Markov processes, it is
best to return to Lévy’s ideas about “stochastic differentials.” Let x(+) be a
Markov process with values in R? and suppose that for ¢ > 0 and test functions
@ € C3(RY)

©.1)  E[p(x(t + h)) — @{x(6)) | x(s). s < t] = hLp(x{t)) + o),  h>0,

where, for each ¢ > 0, L, is a linear operator on CZ(RY) into C,(R?). It is obvious
that L, must satisfy the weak maximum principle, since if ¢ achieves its maximum
at x° then Efe(x(t + h)) — o(x(2))|x(t) = x°] < 0. Moreover, if x° € R? and
n € CP(R?) is such that n(x®)=1, 0 <n < 1, and x is identically zero outside
an e-neighborhood of x°, then P(|x(t + h) — x°| = e|x(t) = x°) < E[(} — n(x(t +
h)))|x(t) = x°] < h|L,n(x°)| + o(h). Thus if ¢ € CF(R’) vanishes in a neighbor-
hood of x%, then |L,¢(x%)| € C,||@|- That is to say, L, is “quasilocal.” Therefore,
if we now define the operator L, ,s by the relation

Ll. ,o(P(X) = [L,(T,,_ x0 ¢)](x0 )’ X € R‘,

where 7,¢(+) = @(- + y), then L, . is a quasi-local, translation invariant operator
satisfying the maximum principle. This class of operators is well-known and can
be shown to coincide with the class of generators of time homogeneous indepen-
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dent increment processes (cf. Hille and Philips [1957]). In particular, we can
conclude that

1 4 9?2 q é
Lok =5 ¥ a'l x°)$g;xj =)+ Lo, x°)a—i(x°)

ij=1
<y, Vo(x°))

+ f[ote + 9 ota0)+ BTE

)M (t, x°; dy)

where ((a"/(t, x°))) is non-negative definite and M(t, x°; +) is a Lévy measure.
More important, we develop from these considerations the intuitive picture of the
process x(-) leaving x(t) like the independent increment process with character-
istics a(t, x(t)), b(t, x(t)), and M(t, x(t); -). Throughout this book we will be re-
stricting ourselves to continuous Markov processes. For a continuous process, the
Lévy measure M must be absent. That is, if x(-) is a continuous Markov process
and (0.1) obtains, then

(0.2 L—1 i o 3 b( 0

.2) '_25,,-2;10 (¢, x)ax.. 3, +21: t, x)ax'
and for small h > 0, x(t + h) — x(t) is like the Gaussian independent increment
process having mean b(t, x(t)) and covariance a(t, x(t)). (A slightly different
presentation of these ideas is given in the introduction to Ité [1951]. We recom-
mend It6’s discussion to the interested reader.)

The structure of this book can now be explained in terms of the ideas in-
troduced in the preceding paragraph. Starting from (0.1), various tacks toward an
understanding of the process x(-) suggest themselves. The most analytic of these is
the following. Let P(s, x;t, *) denote the transition probability function
determined by x(+) (ic., P(s, x; t, I') = P(x(t) € ['|x(s) = x})). From (0.1), we sec
that

%J’ P(s, x; t, dy)p(y) = lim f P(s, x; t, dz)
x [ P(t, z; 1 + b, dy)o(y) - @(2))

= J‘ P(s, x; t, dy)Lo(y).

Of course, we have used the Chapman-Kolmogorov equation. From this we
derive the formal relation:

(0.3) g—t}’(s, x;t, *)=L¥P(s, x; t, *), t>s,

where L} is the formal adjoint of L,. Equation (0.3) is called the forward equation
(in physics and engineering literature it is often referred to as the Fokker-Planck
equation). Since it is clear that

(0.3) lim Ps, x; ¢, *) = 8,(-),

tis
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it is reasonable to suppose that one can recapture P(s, x; t, *) from (0.3) and (0.3').
Indeed, this was done with great success by Kolmogorov [1931] and Feller [1936]
in their pioneering work on this subject. However, there are severe technical
problems with (0.3). In particular, one must tacitly assume that P(s, x; t, ) admits
a density p(s, x; t, y) and think of (0.3) as being an equation for pls, x;1,y)as a
function of ¢ and y; and even when such an assumption is justified, there remain
inherent difficulties in the interpretation of L¥ unless the coefficients are smooth.
For this reason, people turned their attention to the backward equation. Namely,
starting once again from (0.1) we have

—_ g—l;(s, X)= — a—asj P(S, x; dy)(p()/)

= lim %J‘P(s — h, x; s, dy)(u(s, y) — u(s, x))

hlO

= Lu(s, x),

where u(s, x) = | P(s, x; t, dy)p(y), 0 < s < t. (Notice that the preceding compu-
tation is not fully justified since we do not know that u(s, -)is in our test-function
space. Nonetheless, the argument is correct in spirit.) Hence we arrive at

(0.4) ;%P(s,x;t, )+ LP(s, x; t, ") =0, O<s<t,

0.4) tim P(s, x t, *) = 6,(").

stt

(It should be clear why (0.3) is the forward equation and (0.4) is the backward
equation: (0.3) involves the forward (i.e., future) variables whereas (0.4) involves
the backward (ie., past) variables.) Again one might suspect that (0.4) and (0.4')
determine P(s, x; t, -} and now there are no problems about interpretation. The
study of diffusion theory via the backward equation has been one of the more
powerful and successful approaches to the subject and we have included a sketch
of this procedure in Chapters 2 and 3.

The major objection to the study of diffusion theory by the method just
described is that the hard machinery used comes from the theory of partial differ-
ential equations and the probabilistic input is relatively small. A more probabilist-
ically satisfactory approach was suggested by Lévy and carried out by Ito [1951).
The idea here is to return to the intuitive picture of x(t + h) — x(t), for smallh > 0,
looking like the Gaussian independent increment process with drift b(z, x(r)) and
covariance a(t, x(t)). In differential form, this intuitive picture means that

0.5) dx(t) = o(t, x(t)) dB(t) + b(t, x(t)) dt

where §(*) is a d-dimensional Brownian motion and ¢ is a square root of a.
Indeed, o(t, x(£){B(t + h) — B(t)) + b(t, x(r)) will be just such a Gaussian process;
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and if {x(s), O0<s<t} is {B(s): 0 <s <t}-measurable, then o(t, x(r)) x
(B(t + h) — B(t)) + b(t, x(r)) will be conditionally independent of {x(s): 0 < s <t}
given x(t). There are two problems of considerable technical magnitude raised by
(0.5). First and foremost is the question of interpretation. Since a Brownian path is
nowhere differentiable it is by no means obvious that sense can be made out of a
differential equation like (0.5). Secondly, even if one knows what (0.5) means, one
still has to learn how to solve such an equation before it can be considered to be
useful. Both these problems were masterfully handled by It4, a measure of the
success of his solution is the extent to which it is still used. We develop 1td’s theory
of stochastic integration in Chapter 4 and apply it to equations like (0.5) in
Chapter 5.

With Chapter 6 we begin the study of diffusion theory along the lines initiated
by us in Stroock and Varadhan [1969]. In order to understand this approach, we
return once again to (0.1). From (0.1), it is easy to deduce that:

‘% E[eo(x(t2))| x(s), s < 1,]

~tim £ E[E[p(s(ts + 1) = ol xsh s < o] xish s < 1)

= E[L0(x(t:) | x(sh s < 1,].

Thus
Elp(x(t2)) - o(x(t) - | ® Liple(t)) de[x(s) s < 1,] = 0;
or in other words

(06) X,0) = 0(s(0) - [ Lip(s(s) d

is a martingale for all test functions ¢. (Notice that the line of reasoning leading
from (0.1) to (0.6) is essentially the same as that from (0.1) to the forward equa-
tion.) One can now ask if the property that X (-) is a martingale for all test
functions ¢ uniquely characterizes the process x(- ) apart from specifying x(0). To
be more precise, given L,, consider the following problems:

(i) 1s there for each x € R? a probability measure P on C([0, ), R?) such
‘ that P(x(0) = x) = 1 and X () is a martingale for all test functions ¢?
an
(ii} Is there at most one such P for each x?
Problems (i) and (ii) constitute what we call the martingale problem for L,. Of
course problems (i) and (ii} are interesting only if one can also answer
(iii) If (i) and (ii) have affirmative answers, what conclusions can be drawn?

To convince oneself that these are reasonable questions, one should recall that in
the case when d = 1 and L, = 44%/dx?, Lévy (cf. Doob [1953] or Exercisc 4.6.6)
characterized Wiener measure as the unique probability measure P on
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C([0, ), R!) such that P(x(0) =0) = 1 and x{t) and x3(t) — t are martingales.
That is, he showed that in this case one only needs the functions ¢(x) = x and
¥(x) = x2. (Actually [cf. Exercise 4.6.6], this is a general phenomenon, since under
general conditions one can show that X (+) is a martingale for all test functions ¢
if X,(+)and X, (-)are martingales for ¢,(x) = x;and ¥;{x) = x;x;, 1 <i,j < d.
When d = 1, this general phenomenon was already pointed out in Chapter 9 of
Doob [1953].) Furthermore, one should remember that much of Doob’s beautiful
work in potential theory relies heavily on the observation that X ,(+) is a martin-
gale when P is the process associated with L,. Thus what if anything is truly new
about our approach is that we have made this observation the cornerstone of our
theory and asked if in fact it does not underlie the whole structure of diffusion
theory.

InyChapter 6 we lay the foundation for everything that follows. In particular,
we prove there a basic existence theorem for solutions to the martingale problem.
Once this is done, we start laying the groundwork for out attack on the question
of uniqueness by deriving general conclusions that can be drawn about a P on
C([0, ), RY) under the assumption that X (-) is a martingale for all test func-
tions ¢. These include the relationship between the martingale problem and the
(strong) Markov property, as well as the formula of Cameron, Martin and
Girsanov.

Chapter 7 contains a proof of our best general theorem about uniqueness for
the martingale problem. What we show is that if the coefficients g and b in L, are
bounded and measurable and for each 7 > 0 and R > 0, a satisfies

©.7) inf g &G0
D<sST 0¢RIO] |6]
Ixj<R

and

(0.8) lim sup fYa(s, x*) — a(s, x?)| =0,

30 0<ss<T
Ix}, {%3 <R
tx'—x* <&

then the martingale problem for L, is well-posed (i.e., existence and uniqueness
hold). As a dividend of our proof, we show that L, determines a strong Markov,
strongly Feller continuous process. ‘

The contents of Chapter 8 are somewhat tangential to the main thrust of our
development. What we do there is expand on the theme initiated in Watanabe and
Yamada [1971] in their investigation of the relationship between Itos approach
and the martingale problem.

In Chapter 9 we return to L,’s having coefficients of the sort studied in Chapter
7. Here we take advantage of certain analytic relations and estimates upon which
our proof of uniqueness in Chapter 7 turns. In brief, the results of these considera-
tions are various [?-estimates for the transition probability function of the process
determined by L,.

Chapter 10 extends the martingale problem approach to unbounded co-
efficients. The point made here is that this extension is elementary, provided
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one can show that the diffusion process does not “explode.” We give some
standard conditions that can be used to test for explosion.

Again in Chapter 11 we deal with L,'s of the sort studied in Chapters 7 and 10.
This time we are interested in stability results for the associated processes. These
results can be naturally divided into two categories: convergence of Markov chains
to diffusions (i.e., invariance principles of the sort initiated by Erdos and Kac and
perfected by Donsker) and convergence of diffusions to other diffusions. Both
categories are surprisingly easy to handle given the results of Chapters 7 and 9.

The final chapter, Chapter 12, takes up the question of what can be done in
those circumstances when existence of solutions to a martingale problem can be
proved but uniqueness cannot. The idea here, is to make a careful “selection” of
solutions so that they fit together into a Markov family. The procedure that we
use goes back to Krylov [1973]. We also show in Chapter 12 that every solution to
a given martingale problem can, in some sense, be built out of those solutions
which are part of a Markov family.

The only parts of the book which we have not yet discussed are the beginning
and the end. Chapter 1 provides an introduction to those parts of measure and
probability theories which we consider most important for an understanding of
this book. Although the material here is not new, much of it has be¢n reworked. In
particular, our criteria for compactness in Section 1.4 strikes us as a useful varia-
tion on the ideas of Prohorov.

Finally, in spite of our attempt to make it look as if it were, the appendix is not
probability theory. Instead, it is that part of the theory of singular integrals on
which we rely in Chapters 7 and 9. At the present time, one has to depend on these
results from outside probability theory and we have provided a proof in the
Appendix in order to make the book self-contained.

It is now time for us to thank the many people and organizations to whom we
are deeply indebted. The original work out of which this book grew was per-
formed while both of us were at the Courant Institute of Mathematical Sciences.
During that period we were encouraged and stimulated by many people, parti-
cularly: M. Kac, H. P. McKean Jr,, S. Sawyer, M. D. Donsker and L. Nirenberg;
and we were supported by grants from the Air Force, the Sloan and Ford founda-
tions as well as general C.1.M.S. funds. Whether this book would ever see the light
of day was cast into considerable doubt by the departure from C.LLM.S. of one of
us to the Rocky Mountains in 1972. At that time not a sentence of it had been
written. However, in 1976 we had the good fortune to visit Paris together under
the auspices of Professors Neveu and Revuz; and it was at that time {much to the
dismay of an accompanying wife) that we actually began to write this book.
Progress from that point on has been slow but steady. During the interim we have
incurred a considerable debt of gratitude to several people: wives Lucy and Vasu;
secretaries Janice Morgenstern, Gloria Lee, Susan Parris and Helen Samoraj;
students Marty Day and Pedro Echeverria; colleagues Richard Holley, G. Papan-
icolaou, M. D. Donsker, and E. Fabes; gadfly J. Doob, and publisher Springer
Verlag. To all these we extend our heart felt thanks along with the promise that
they do not necessarily have to read what we have written.



Chapter 1

Preliminary Material: Extension Theorems,
Martingales, and Compactness

1.0. Introduction

As mentioned in the Introduction, the point of view that we take will involve us in
a detailed study of measures on function spaces. There are a few basic tools which
are necessary for the construction of such measures. The purpose of this chapter is
to develop these tools. In the process, we will introduce some notions (e.g., condi-
tioning and martingales) which will play an important role in what follows. Sec-
tion 1.1 contains the basic theorem of Prohorov and Varadarajan characterizing
weakly compact families of measures on a Polish space. Using their results, we
prove the existence of conditional probability distributions. The final topics in
Section 1.1 are the extension theorems of Tulcea and Kolmogorov. Section 1.2
introduces the notions of progressively measurable functions and martingales. In
connection with martingales we prove Doob’s inequality, his stopping time
theorem and a useful integration by parts formula. Finally we prove a result
connecting martingale theory and conditioning.

In Section 1.3 we specialize the results of Section 1.1 to the case when our
Polish space is C([0, o); RY) (i.e., the space of R? valued continuous functions on
[0, c0) with the natural topology induced by uniform convergence on bounded
intervals). Section 1.4 contains a useful sufficient condition for compactness of a
family of measures on C([0, «0); R?) in terms of certain martingales associated
with them.

1.1. Weak Convergence, Conditional Probability
Distributions, and Extension Theorems

Throughout this section (X, D) will stand for a Polish space (i.e.. a complete
separable metric space) and # = @y its Borel o-field. We denote by M (X)) the set
of all probability measures on (X, #) and by C,(X) the set of all bounded contin-
uous functions on X. We will view M(X) as a subset of the dual space of C,(X)
and give it the inherited weak* topology. It will turn out that this topology makes
M(X) into a metric space.

1.1.1 Theorem. Let p, € M(X) for each n > 1. Given u € M(X), the following are
equivalent :



