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Preface

This book is the result of an intended research paper that grew out of control.
A preprint containing a substantial part of our investigations was already published
on arXiv in 2010. To make its content more accessible, we decided to include some
additional material. These additions more than doubled the size of this work as
compared with the 2010 version and caused a long delay in its completion.

More than fifteen years ago we became both interested in some basic problems
on quasisymmetric parametrization of 2-spheres. This is related to the dynamics of
rational maps —an observation we believe was first made by Rick Kenyon. During
our time at the University of Michigan we decided to join forces and to investigate
this connection systematically.

We realized that for the relevant rational maps an explicit analytic expression is
not so important, but rather a geometric-combinatorial description. As this became
our preferred way of looking at these objects, it was a natural step to consider a
more general class of maps that are not necessarily holomorphic. The relevant
properties can be condensed into the notion of an expanding Thurston map, which
is the topic of this book. We will discuss the underlying ideas more thoroughly in
the introduction (Chapter 1).

Part of this work overlaps with studies by other researchers, notably Haissinsky-
Pilgrim [HP09], and Cannon-Floyd-Parry [CFP07]. We would like to clarify some
of the interrelations of our investigations with these works. Theorem 15.1 (in the
body of the text) was announced by the first author during an Invited Address at
the AMS Meeting at Athens, Ohio, in March 2004, where he gave a short outline
of the proof. After the talk he was informed by Bill Floyd and Walter Parry that
related results had been independently obtained by Cannon-Floyd-Parry (which
later appeared as [CFPOT]).

Theorem 18.1 (ii) was previously published by Haissinsky-Pilgrim as part of a
more general statement [HPO9, Theorem 4.2.11]. Special cases go back to work by
the second author [Me02] and unpublished joint work by Bruce Kleiner and the
first author. The current, more general version emerged after a visit of the first
author at the University of Indiana at Bloomington in February 2003.

During this visit the first author explained to Kevin Pilgrim concepts of quasi-
conformal geometry and his joint work with Bruce Kleiner on Cannon’s conjecture
in geometric group theory. Kevin Pilgrim in turn pointed out Theorem 11.1 and the
ideas for its proof to the first author. After this visit versions of Theorem 18.1 (ii)
with an outline for the proof were found independently by Kevin Pilgrim and the
first author. A proof of Theorem 18.1 (ii) was discovered soon afterwards by the
authors using ideas from [Me02] (see [Mel0] for an argument along similar lines)
in combination with Theorem 15.1.
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Notation

We summarize some of the most important notation used in this book for easy
reference.

When an object A is defined to be another object B, we write A := B for
emphasis.

We denote by N={1,2, ...} the set of natural numbers and by Ng={0,1,2,...}
the set of natural numbers including 0. We write Z for the set of integers, and @,
R, C for the set of rational, real, and complex numbers, respectively. For k € N|
we let Zy = Z/kZ be the cyclic group of order k.

We also consider N :== NU {oo}. Given a,b € N we write alb if a divides b. This
notation is extended to N-valued functions. If A C N, then lem(A) € N denotes the
least common multiple of the numbers in A. See Section 2.5 for more details.

The floor of a real number x, denoted by |z], is the largest integer m € Z with
m < x. The ceiling of a real number x, denoted by [z], is the smallest integer
m € Z with x < m.

The symbol 2 stands for the imaginary unit in the complex plane C. The
real and imaginary part of a complex number z are indicated by Re(z) and Im(z),
respectively, and its complex conjugate by Z. The open unit disk in C is denoted by
D :={z e C: |z| < 1}, and the open upper half-plane by H := {z € C : Im(2) > 0}.

We let C = CU {oc} be the Riemann sphere. It carries the chordal metric o
given by formula (A.5) (111 the dpp(‘n(hx) Similarly, we let R:=RU {oc}. Here we
consider R as a subset of C, and so R c C.

The Lebesque measure on R?, C, C, or D is denoted by L. If necessary, we add
a subscript here to avoid ambiguities. More precisely, £ = Lg2 and £ = L¢ are the
Euclidean area measures on R? and C, £ = Lz is the spherical area measure on (E,
and £ = Lp the hyperbolic area measure on D considered as the hyperbolic plane.

When we consider two objects A and B, and there is a natural identification
between them that is clear from the context, we write A = B. For example, R? = C
if we identify a point (z,y) € R? with x + yi € C.

The derivative of a holomorphic function f is denoted by f’ as usual. If Q C C
is an open set and f: €2 — Cisa holomorphic map, then f* stands for its spherical
derivative (see (A.6)). For a differentiable (not necessarily holomorphic) map, we
use D f to denote its derivative considered as a linear map between suitable tangent
spaces. If these tangent spaces are equipped with norms, then we let || Df|| be the
operator norm of D f. Sometimes we use subscripts here to indicate the norms.

Two non-negative quantities a and b are said to be comparable if there is a
constant (' > 1 (possibly depending on some ambient parameters) such that

1
5(1, <'h L Ca;
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xiv NOTATION

We then write a < b. The constant C' is referred to as C'(=). Similarly, we write
a < borb Z a,if there is a constant C' > 0 such that a < Cb, and refer to the
constant C' as C(<) or C'(2). If we want to emphasize the parameters o, 3,... on
which " depends, then we write C'(=<) = C(a, 3,...), etc.

The cardinality of a set X is denoted by #X and the identity map on X by
idy. If o, € X for n € N are points in X, we denote the sequence of these points
by {@n }nen, or just by {w,} if the index set N is understood.

If f: X = X is amap and n € N, then

ft=fo---of
N, e’
n factors

is the n-th iterate of f. We set fU = idyx for convenience, but unless otherwise
indicated it is understood that n € N if we speak of an iterate f™ of f.

Let f: X — Y be a map between sets X and Y. If U € X, then f|U stands
for the restriction of f to U. If A C Y, then f~'(A) :={x € X : f(x) € A} is the
preimage of A in X. Similarly, f~!'(y) == {x € X : f(x) = y} is the preimage of a
point y € Y.

If f: X — X is a map, then preimages of a set A € X or a point p € X
under the n-th iterate f are denoted by f~"(A) = {o € X : f"(x) € A} and
F"(p)={xe X : f"(x)=p}, respectively.

Let (X,d) be a metric space, a € X, and r > 0. By By(a,r) = {x € X :
d(a,x) < r} we denote the open and by By(a.r) = {x € X : d(a,2) < r} the closed
ball of radius r centered at a. If A, B C X, we let diamg(A) be the diameter, A be
the closure of A in X, and

disty(A, B) = inf{d(z,y) : x € A,y € B}
be the distance of A and B. If p € X, we let disty(p, A) = disty({p}. A). For e > 0,

Nic(A) = {xr e X : disty(x, A) < €}
is the open e-neighborhood of A with respect to d. If v: [0,1] — X is a path,
we denote by length,(v) the length of v. Given @ > 0, we denote by Hff the
Q-dimensional Hausdorff measure on X with respect to d. We drop the subscript
d in our notation for By(a,r), etc., if the metric d is clear from the context. For
the Euclidean metric on C we sometimes use the subscript C for emphasis. So, for
example,
Be(a,r) ={z€C:|z—a| <r}

denotes the Euclidean ball of radius » > 0 centered at a € C.

The Gromov product of two points x, y € X with respect to a basepoint p € X in
a metric space X is denoted by (2 -y), or by (x-y) if the basepoint p is understood
(see Section 4.2). The boundary at infinity of a Gromov hyperbolic space X is
represented by do X. If a group G acts on a space X, then we write G ~ X to
indicate this action.

Often we use the notation I = [0,1]. If X and Y are topological spaces, then
a homotopy is a continuous map H: X x [ — Y. For t € I, we let H,(-) := H(-.t)
be the time-t map of the homotopy.

The symbol S? indicates a 2-sphere, which we think of as a topological ob-
ject. Similarly, 77 is a topological 2-torus. For a 2-torus with a Riemann surface
structure we write T (see Section A.8).



NOTATION XV

Often S? (or the Riemann sphere @) is equipped with certain metrics that
induce its topology. The visual metric induced by an expanding Thurston map f is
usually denoted by o (see Chapter 8). The canonical orbifold metric of a rational
Thurston map f is indicated by wy (see Section A.10).

The (topological) degree of a branched covering map f between surfaces is
denoted by deg(f) and the local degree of f at a point x by deg,(x) or deg(f,z)
(see Section 2.1). We write crit(f) for the set of critical points of a branched
covering map (see Section 2.1), and post(f) for the set of posteritical points of a
Thurston map f (see Section 2.2).

The ramification function of a Thurston map f is denoted by «ay (see Defini-
tion 2.7), and the orbifold associated with f by Oy (see Definition 2.10).

For a given Thurston map f: S? — S? we usually use the symbol C to indicate
a Jordan curve C C S? that satisfies post(f) C C.

When we consider objects that are defined in terms of the n-th iterate of a
given Thurston map, then we often use the upper index “n” to emphasize this.

For a topological cell ¢ in a topological space X' we denote by de¢ the boundary
of ¢, and by int(c) the interior of ¢ (see Section 5.1). Note that dc and int(c) usually
do not agree with the boundary or interior of ¢ as a subset of X

Cell decompositions of a space X are usually denoted by D (see Chapter 5).
Let n € Ny, f: 2 = S? be a Thurston map, and C C S? be a Jordan curve with
post(f) € C. We then write D™(f,C) for the cell decomposition of S? consisting of
the cells of level n or n-cells defined in terms of f and C (see Definition 5.14). The
set of corresponding n-tiles is denoted by X™, the set of n-edges by E", and the
set of n-vertices by V" (see Section 5.3).

In this context we often “color” tiles “black™ or “white”. We then use the
subscripts b and w to indicate the color (see the end of Section 5.3). For example,
the black and white O-tiles are denoted by X{ and X9, respectively.

The n-flower of an n-vertex v is denoted by W"(v) (see Section 5.6). The
number D,, = D, (f,C) is the minimal number of n-tiles required to join opposite
sides (see (5.15)).

The number m(x,y) = myse(x,y) is defined in Definition 8.1. The expansion
factor of a visual metric is usually denoted by A (see Definition 8.2).

We write Ag(f) for the combinatorial expansion factor of a Thurston map f
(see Proposition 16.1).

The topological entropy of a map f is denoted by h¢o,(f), and the measure-
theoretic entropy of f with respect to a measure i by h,(f). The measure of maz-
imal entropy of an expanding Thurston map f is indicated by v¢. See Chapter 17
for these concepts.

For a rational Thurston map f: C — C we write Qy for its canonical orbifold
measure (see Section A.10) and, if f is also expanding, A; for the unique probability
measure on C that is absolutely continuous with respect to Lebesgue measure (see
Chapter 19).
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